
Scuola Superiore Meridionale
University of Naples Federico II

Doctoral Thesis
in Modeling and Engineering Risk and Complexity

Controlling the Collective Dynamics of
Large-Scale Multi-Agent Systems

Author:
Gian Carlo Maffettone

Supervisors:
Prof. Mario di Bernardo

Prof. Maurizio Porfiri

Submitted in fulfilment of the requirements for
the degree of Doctor of Philosophy in
Modeling and Engineering Risk and Complexity.
Coordinator: Prof. Mario di Bernardo.

Modelling and Engineering
Risk and Complexity

December 12, 2024





Alle nonne, Beba e Fabrizia

iii



iv



Abstract

The understanding, modeling and control of large-scale multi-agent systems is crucial
in uncountable open problems spanning from mathematics to physics and engineering.
A deeper comprehension of these fascinating dynamical entities can enable the devel-
opment of important steps towards new, more convenient solutions for many real world
applications, from etho/swarm robotics to synthetic biology, and traffic/crowds control.
In this Theses, we focus on how the multi-scale nature of large aggregates of interacting
dynamical units plays an essential role when dealing with cutting-edges control prob-
lems. In particular, we face the problem of how to analytically ensure the fulfillment
of macroscopic objectives regarding the emerging properties of a complex system, by
only using microscopic actuation. Within the general context of density control, we both
consider homogeneous and heterogeneous groups. In the former case, we apply control
actions to all the individuals in the collective, in the latter, control is constrained to be
exertable via a subset of special leader agents. Robustness of the proposed solution is
assessed theoretically, numerically and experimentally. In particular, the experimental
validation is performed through a mixed reality platform we developed for the agile
testing of swarm robotics solutions.
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1 Introduction

1.1 Controlling the collective dynamics of large-scale
multi-agent systems

Many fascinating phenomena observed in nature arise from the interaction of highly in-
terconnected, simple dynamical units. Specifically, through local information exchange,
remarkable group behaviors can emerge. These behaviors, intriguingly, cannot be ex-
plained by merely aggregating those of the individuals in the group; rather, they are
generated by the inherent feedback mechanisms implemented through local interactions
[1]. Examples include collective animal behaviors such as fish schooling [2, 3, 4], bird
flocking [5, 6], and the division of labor in ants [7, 8, 9]. Other examples involve engi-
neered systems designed to produce useful emergent properties, such as social networks
[10, 11], the Internet of Things [12], and power grids [13]. Collectives exhibiting these
behaviors are typically referred to as complex and/or multi-agent systems [14].

Understanding and controlling these systems is key to solving numerous challenges
from various perspectives. First, it is essential to manage the behavior of complex systems
that directly impact daily life. For example, smoothing traffic waves can promote energy
efficiency and reduce pollution [15]. In human crowds, it is vital to prevent crowd
crushes (sometimes referred to as stampedes) [16]. Equally important is ensuring that
desired collective behaviors emerge in groups of agents collaborating to achieve a task.
Examples of such settings include biological systems (e.g., dogs shepherding sheep) [17],
social systems (e.g., influencers guiding public opinion) [18, 19], and swarm robotics
(e.g., search and rescue missions) [20].

This Thesis examines large-scale multi-agent systems and the control of their emer-
gent properties. Specifically, we tackle the problem of creating a mathematical, com-
putational, and experimental framework for agile analysis and control design. The

1



1.1. Controlling the collective dynamics of large-scale multi-agent systems

Figure 1.1: Conceptualization of a large-scale multi-agent system, emphasizing their
multi-scale nature.

following sections offer a brief overview of large-scale complex systems, emphasizing
their multi-scale nature, a critical factor when controlling these systems.

1.1.1 Large-Scale Complex Systems

Complex multi-agent systems consist of interacting dynamical units that, through feed-
back mechanisms from local interactions, exhibit emergent properties [1]. These systems
can be described at different scales, making them multi-scale systems1. This Thesis fo-
cuses on two key levels:

• the microscopic scale, where individual behaviors are described and modeled;

• the macroscopic scale, where collective behavior emerges, often in ways not easily
traced to individual actions.

Consider a school of fish. At the microscopic scale, we study how individual fish
influence each other’s movement, while at the macroscopic scale, the focus shifts to the
behavior of the school as a whole. This transition often involves moving from the study
of individual motions to the spatio-temporal dynamics of the group’s density. See Fig.
1.1 for a schematic representation.

1In dynamical systems theory, multi-scale typically refers to systems evolving on different time/spatial
scales (fast and slow). Here, we use the term to highlight the distinct levels of description in complex systems
(microscopic and macroscopic)

2



Chapter 1. Introduction

At the microscopic scale, mathematical formulations typically use ordinary or stochas-
tic differential equations (ODEs/SDEs), well suited for describing dynamical systems on
potentially time-varying network topologies [1]. Conversely, the macroscopic scale is
often best described by partial differential equations (PDEs), which efficiently capture
emergent properties that vary across at least two dimensions, such as time and space,
such as time and space. In some contexts, an intermediate mesoscopic scale is defined,
but we do not include this additional level in our work2.

When the number of interacting nodes or agents becomes very large, theoretically
infinite, we refer to the system as a large-scale complex multi-agent system. While a
precise definition is absent in the literature, we can say that when emergent properties
no longer depend on group size, we are in a large-scale scenario [22]. In such cases,
microscopic descriptions based on ODEs/SDEs are impractical due to the curse of
dimensionality in agent-based models [23, 24]. Thus, macroscopic descriptions offer a
more efficient and compact approach.

1.1.2 Control of complex systems across scales

This thesis focuses on the control of large-scale complex multi-agent systems, including
robot swarms and heterogeneous populations of natural and artificial agents, such as
animals and robots. Traditionally, control means taking measurements and applying
actuation to a dynamical system to achieve a desired behavior (see Fig. 1.2a for a
classical control loop).

In classical scenarios, the system to control, measurements, and actuation can be
modeled at the same descriptive scale. When the process or plant to control is a complex
multi-agent system, many critical choices need to be made. Specifically, we must
determine: (𝑖) at which scale the desired behavior is best defined; (𝑖𝑖) at which scale
measurements can be performed; and (𝑖𝑖𝑖) at which scale actuation can be executed.
Typically, for complex systems, the desired behavior is related to emerging properties
and is thus macroscopic; however, actuation can be performed microscopically, as we are
often constrained to actuate only some of the units comprising the group. Measurements
can also be acquired macroscopically, or, at least, starting from microscopic sensing,
we can estimate macroscopic observables of the system. For a schematic representation
of how the classical feedback control loop can be adjusted in the context of large-scale
complex systems, see Fig. 1.2b. Note that in many real applications, microscopic

2Some literature [14] defines the mesoscopic level as the point where clustering behavior begins. Others
[21] describe the mesoscopic scale as capturing the spatio-temporal dynamics of a group’s density, while the
macroscopic scale addresses the time dynamics of the density’s momenta.

3



1.2. Key research questions

(a)

(b)

Figure 1.2: Control schemes for (a) a classical system (i.e., process, plant), and (b)
a complex (multi-scale) system (red shaded arrows emphasize that each task can be
performed on multiple description’s scale).

control actions cannot be applied to all agents in the group. This limitation has led to
the development of various pinning and leader-follower techniques for controlling such
systems at the microscopic level [25].

1.2 Key research questions
This thesis focuses on understanding how to systematically close feedback control loops
across different descriptive scales to effectively bridge the gap between the microscopic
agent level and the macroscopic level of emerging behavior. In doing so, we aim to
derive analytical guarantees of convergence toward the desired behavior. Moreover,
we seek agile, resource-efficient methods for experimentally validating these control
methodologies in large-scale complex systems.

4



Chapter 1. Introduction

1.3 Contributions of the Thesis
In this Thesis, we make contributions on three fundamental aspects in the broad area of
modeling and control of large-scale complex systems.

We provide a general framework for the multi-scale control of complex systems ac-
complishing a macroscopic control goal through microscopic actuation and macroscopic
sensing. We focus on spatial organization tasks and, in so doing, we utilize the con-
tinuification control paradigm [26]. Specifically, for a large swarm of mobile agents
moving in domains of arbitrary size, we derive a continuum description of their dynam-
ics in the limit of an infinite number of agents through mean-field theory [27, 28]. This
process outputs a transport-diffusion equation describing the spatio-temporal dynamics
of the group’s density. Such a continuum/macroscopic description is used to perform a
macroscopic control design ensuring convergence towards the desired behavior, and, it
is finally discretized into deployable control inputs to microscopically actuate the agents
in the collective. The robustness of this control pipeline can be analytically assessed in
the continuum.

We expand this continuification-based framework to deal with leader-follower sce-
narios. In particular, to cope with the unrealistic assumption of being able to control
every agent in the complex system of interest, we consider the case of actuating only a
subset of the group. In the continuum limit, we are able to provide analytical conditions
guaranteeing that a class of control problems is solvable. Such conditions leverage infor-
mation about the leaders-to-followers ratio, the sensing capabilities of the leaders, and
the stochasticity of the followers.

Finally, we consider the problem of the experimental testing of control methodologies
for large-scale systems and swarm robotics. In particular, for exploiting the multi-scale
nature of large-scale complex systems, many new control methodologies rely on the
assumption of swarms of infinite agents. It is then understandable that the vast majority
of such new techniques are solely tested in numerical simulations because of the inherent
high cost and resources demand of full-scale experiments. In order to cope with these
costs and still perform experiments, we provide an intermediate hybrid experimental
platform. This set-up provides a mixed reality environment where real robots and virtual
ones interact and cooperate, enabling the possibility of having a swarm of arbitrary size.

5



1.4. Relevance to risk and complexity

1.4 Relevance to risk and complexity

The work presented in this Thesis falls within the field of controlling and engineering
complex systems. Specifically, it tackles the problem of controlling some dynamical
units (or all of them) in a multi-agent system in order to let a desired macroscopic state
emerge. We propose a systematic control pipeline to address the pressing open problem
of how to close feedback loops across different description scales. We successfully bridge
the gap between the agent/microscopic level, and the emergent/macroscopic one, while
ensuring analytical guarantees of convergence towards desired states.

The mathematical framework we propose is suitable in many applications. For
instance, it can be used for addressing swarm robotics problems, where large ensembles
of mobile robotic agents need to accomplish some desired spatial organization. It can
find application in search and rescue operations, where, a small set of controllable agents
is in charge of driving other ones away from danger. Similarly, we can think of traffic
control problems, where autonomous agents are in charge of smoothing traffic waves
away, so to reduce the energetic consumption of the collective.

Our work also considers the open challenge of agile experimental testing of control
techniques involving large-scale systems. Drawing inspiration from apparently uncorre-
lated fields, we propose a mixed reality platform which provides real robots and virtual
ones. In such a context, we are able to create robotics groups of arbitrary size (by
increasing the number of virtual agents), while effectively facing the cost of full-scale
experiments.

1.5 Thesis structure and outline

This Thesis is organized as follows. In Chapter 2, we provide the reader with a Literature
review concerning the main topics of the thesis. In Chapter 3 and 4, we collect the
contribution given in [29, 30, 31, 32], regarding the continuification control of mobile
agents moving in periodic domains of arbitrary size and its robustness properties. In
Chapter 5, we show the work presented in [33], where we consider a macroscopic leader-
follower scenario, in which, a group of leader agents is in charge of letting a group of
followers agents displace according to a desired density. In Chapter 6, we expand such
a leader-follower scenario for modeling switching leadership in large groups of agents.
Specifically, we consider the case where a group of leaders and followers is collectively
solving a spatial organization task, while online exchanging the leadership roles. In

6



Chapter 1. Introduction

Chapter 7, we discuss a mixed reality experimental platform we developed for the agile
testing of control solutions for large-scale problems and swarm robotics. In Chapter 8,
we discuss the conclusions and the direction for the future of this work.

1.6 Mathematical Preliminaries
In this Section we provide some useful notation and lemmas which are used throughout
the thesis.

Definition 1.1 (Periodic cube). We define Ω := [−𝜋, 𝜋]𝑑 as the periodic cube in R𝑑 .
When 𝑑 = 1, Ω coincides with the unit circle, and we equivalently refer to it by S; when
𝑑 = 2, Ω is the periodic square. If explicitly stated, Ω can also refer to different kind of
spatial domains.

Definition 1.2 (L 𝑝 norms on Ω [34]). Given a scalar function of Ω and time, ℎ :
Ω × R≥0 → R, we define its L 𝑝-norm on Ω as

∥ℎ(·, 𝑡)∥ 𝑝 :=
(∫

Ω

|ℎ(x, 𝑡) |𝑝 dx
)1/𝑝

. (1.1)

For 𝑝 = ∞,

∥ℎ(·, 𝑡)∥∞ := ess supS |ℎ(x, 𝑡) |. (1.2)

For the sake of brevity, we also denote these norms as ∥ℎ∥ 𝑝 , without explicitly indicating
their space and time dependence.

Lemma 1.1 (H¥older’s inequality [34]). Given 𝑓1, . . . , 𝑓𝑛 ∈ L 𝑝 (S), we have




 𝑛∏
𝑖=1

𝑓𝑖







1

≤
𝑛∏
𝑖=1

∥ 𝑓𝑖 ∥ 𝑝𝑖 , if
𝑛∑︁
𝑖=1

1
𝑝𝑖

= 1. (1.3)

For instance, if 𝑛 = 2, we have ∥ 𝑓1 𝑓2∥1 ≤ ∥ 𝑓1∥2∥ 𝑓2∥2, as well as ∥ 𝑓1 𝑓2∥1 ≤ ∥ 𝑓1∥1∥ 𝑓2∥∞.

Remark 1.1. The 𝑝-norm ∥ · ∥ 𝑝 can be also referred to vectors in R𝑑 . In this case, it
needs to be interpreted as

∥v∥ 𝑝 :=

(
𝑑∑︁
𝑖=1

|𝑣𝑖 |𝑝
)1/𝑝

, (1.4)
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1.6. Mathematical Preliminaries

where v = [𝑣1, . . . , 𝑣𝑑].

Lemma 1.2 (Minkowsky inequality [34]). Given two 𝐿 𝑝 functions, 𝑓 and 𝑔, the following
inequality holds:

∥ 𝑓 + 𝑔∥ 𝑝 ≤ ∥ 𝑓 ∥ 𝑝 + ∥𝑔∥ 𝑝 , (1.5)

for 1 ≤ 𝑝 ≤ ∞.

We denote by n = (𝑛1, . . . , 𝑛𝑑) the 𝑑-dimensional multi-index, consisting in the tuple
of dimension 𝑑, with 𝑛𝑖 ∈ Z. Thus, n = [𝑛1, . . . , 𝑛𝑑] is the row vector associated with n.

We denote with “ ∗ ” the convolution operator. When referring to periodic domains
and functions, the operator needs to be interpreted as a circular convolution [35]. We
denote by C𝑝 (S), with 𝑝 ∈ N≥0, the space of functions that are differentiable 𝑝 times
with a continuous 𝑝-th derivative on S. We use 𝑊 𝑘, 𝑝 (S) for the Sobolev space of
functions defined on S (the weak derivatives up to order 𝑘 are in L 𝑝 (S)). Furthermore,
when 𝑝 = 2, we use 𝐻𝑘 (S) := 𝑊 𝑘,2 (S) [36]. When referring to the higher-dimensional
case Ω with 𝑑 > 1, 𝑊 𝑘, 𝑝 (Ω) denotes the space of functions with the following mixed
partial derivative being well defined in a weak sense:

𝑓 (n) =
𝜕 ∥n∥1 𝑓

𝜕𝑥
𝑛1
1 . . . 𝜕𝑥

𝑛𝑑
𝑑

, (1.6)

for any multi-index n such that ∥n∥1 ≤ 𝑘 .
We denote with subscripts 𝑡 and 𝑥 time and space partial derivatives. We indicate

gradient as ∇(·), divergence as ∇ · (·), curl as ∇ × (·), and Laplacian as ∇2 (·).

Lemma 1.3 (Young’s convolution inequality [34]). Given two functions, 𝑓 ∈ 𝐿 𝑝 and
𝑔 ∈ 𝐿𝑞 , we have

∥ 𝑓 ∗ 𝑔∥𝑟 ≤ ∥ 𝑓 ∥ 𝑝 ∥𝑔∥𝑞 , if
1
𝑝
+ 1
𝑞
=

1
𝑟
+ 1, (1.7)

where 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞.

Lemma 1.4 (Poincaré-Wirtinger inequality for S [37]). Assuming 1 ≤ 𝑝 ≤ ∞, for any
function 𝑢 ∈ 𝑊1, 𝑝 (S) with null integral mean (that is, 1/2𝜋

∫
S 𝑢 d𝑥 = 0), the following

inequality holds:

∥𝑢∥ 𝑝𝑝 ≤ 𝐶 (𝑝) ∥𝑢𝑥 ∥ 𝑝𝑝 , (1.8)

8



Chapter 1. Introduction

where 𝐶 (𝑝) > 0 is called the Poincaré constant. For 𝑝 = 2, 𝐶 = 1 [38, 39].

Remark 1.2. The inequality can be posed for more general bounded connected open
domains Ω ⊂ R𝑑 with Lipschitz boundary [36, 40]. In this case, for any function
𝑢 ∈ 𝑊1, 𝑝 such that

∫
Ω
𝑢 dx = 0, the inequality reads

∥𝑢∥ 𝑝𝑝 ≤ 𝐶 (𝑝,Ω)∥∇𝑢∥ 𝑝𝑝 , (1.9)

where ∇𝑢 is the gradient of 𝑢 (notice that ∥∇𝑢∥ 𝑝𝑝 =
∑𝑑
𝑖=1 ∥𝑢𝑥𝑖 ∥

𝑝
𝑝 , with 𝑥𝑖 being the 𝑖-th

coordinate in Ω).

Remark 1.3. When 𝑝 = 2, the optimal Poincaré constant for smooth bounded Lipschitz
domains is 𝐶 = 𝑑/𝜋, where 𝑑 is least upper bound of the set of all distances between
pairs of points in Ω [38].

Lemma 1.5 (Comparison lemma [41]). Given a scalar non-autonomous ODE 𝑣𝑡 =

𝑓 (𝑡, 𝑣), with 𝑣(𝑡0) = 𝑣0, where 𝑓 is continuous in 𝑡 and locally Lipschitz in 𝑣, if a scalar
function 𝑢 fulfills the differential inequality

𝑢𝑡 ≤ 𝑓 (𝑡, 𝑢(𝑡)), 𝑢(𝑡0) ≤ 𝑣0, (1.10)

then

𝑢(𝑡) ≤ 𝑣(𝑡), ∀ 𝑡 ≥ 𝑡0. (1.11)

Lemma 1.6. If 𝛾, 𝛿 and 𝐾 are positive constants with 𝐾 ≫ 𝛾, the one-dimensional
nonlinear dynamical system

𝜂𝑡 (𝑡) = −𝛾 𝜂(𝑡) + 𝛿 exp(−𝐾𝑡)
√︁
𝜂(𝑡), (1.12)

with 𝜂 ≥ 0, globally and exponentially converges to 0. The rate of convergence is 𝛾.

Proof. Under the change of variable 𝜂 =
√
𝜂, we have

𝜂𝑡 (𝑡) = −𝛾
2
𝜂(𝑡) + 𝛿

2
exp(−𝐾𝑡). (1.13)

Equation (1.13) describes a linear one-dimensional non-autonomous dynamical system.
Hence, its solution is

𝜂(𝑡) = 𝜂(0)exp
(
−𝛾

2
𝑡

)
+ 𝛿

𝛾 − 2𝐾

(
exp (−𝐾𝑡) − exp

(
−𝛾

2
𝑡

))
. (1.14)
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1.6. Mathematical Preliminaries

The convergence of 𝜂 is implied by (1.14). Since 𝐾 ≫ 𝛾, the rate of convergence of 𝜂 is
𝛾/2, and that of 𝜂 is 𝛾. ■

Lemma 1.7 (Chapter 1.2 of [42]). Given a scalar function 𝜓, and a vector field A, the
following identity holds:

∇ · (𝜓A) = 𝜓∇ · A + ∇𝜓 · A. (1.15)

Lemma 1.8. For any function ℎ that is periodic on 𝜕Ω, we have∫
𝜕Ω

ℎ(x) · n̂ dx = 0, (1.16)

where n̂ is the is the outward pointing unit normal vector at each point on the boundary
(by decomposing the integral on each side of the domain with the appropriate sign).

10



2 Background

In this Chapter, we give an overview of the Literature for the topics which are more
relevant and related to the work in this Thesis. Specifically, the Chapter is organized
into three parts: the first part, consisting of Sections 2.1, 2.2, 2.3 and 2.4, is focused on
describing the existing Literature on macroscopic modeling and control techniques for
complex multi-agent systems (a schematic overview of this part of the Chapter is provided
in Tab. 2.1); the second part (Section 2.5) discusses existing methods for applying
macroscopic techniques to leader-follower scenarios; finally the third part (Section 2.6)
describes experimental testing set-ups for the validation of control techniques for large-
scale systems and swarm robotics.

2.1 Modeling and control of large-scale multi-agent sys-
tems

A pressing open challenge in control theory is to find methods to steer the collective
behavior of large-scale multiagent systems consisting of many dynamical units (or agents)
interacting with a given, and possibly time-varying, network topology. Examples of
this problem include multirobot systems [22, 43, 44], cell populations [45, 46], and
human networks [10, 47]. From a mathematical viewpoint, such systems are typically
described as a set of 𝑁 stochastic differential equations, describing identical, undirectedly
interacting dynamical systems [1], that is

dx𝑖 =
𝑁∑︁
𝑗=1
𝑎𝑖 𝑗 (𝑡)f (x𝑖 , x 𝑗 ) d𝑡 + 𝑏𝑖u𝑖 (x1, . . . , x𝑁 ) d𝑡 +

√
2𝐷 dW𝑖 , 𝑖 = 1, . . . , 𝑁, (2.1)

where x𝑖 ∈ Ω ⊆ R𝑛 is the 𝑛-th dimensional state of agent 𝑖, 𝑎𝑖 𝑗 is the 𝑖 𝑗-th element of a
time varying adjacency matrix A (𝑖 𝑗-th entry of such a matrix is either 1 or 0 at time 𝑡 –
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2.1. Modeling and control of large-scale multi-agent systems

if agents 𝑖 and 𝑗 are able to communicate at time 𝑡 it is 1, 0 otherwise), f : R𝑛 → R𝑛 is a
function describing the information that is exchanged between agent 𝑖 and 𝑗 , 𝑏𝑖 ∈ {0, 1}
is a flag which is 1 if agent 𝑖 is affected by the control input u𝑖 , 0 otherwise, 𝐷 is a
constant diffusion coefficient, and W𝑖 is a standard Weiner process in R𝑛.

Modeling and control of large-scale complex multi-agent systems need to account
for their multi-scale nature [14]. As highlighted in Chapter 1 (see Fig. 1.1, and Fig.
1.2), such systems can be described at two scales. At the microscopic level, it is possible
to model the dynamics of each agent of the group, together with local interactions with
the others and, eventually, control inputs. Such a framework, usually exploits large
sets of ODEs or SDEs like (2.1), where, each equation is associated with the state of
an individual in the collective. Then, macroscopically, the group exhibits a collective
emerging behavior, which typically it is difficult to be linked with the individuals’
capabilities of the agents. For this reason, macroscopic descriptions usually are based on
small sets of PDEs, catching in a more compact way the emerging behavior of interest.
These macroscopic descriptions also cope with the inherent curse of dimensionality of
agent-based models, as they offer mathematical formulations which are more compact and
amenable for analysis and control design [14]. An interesting drawback of macroscopic
formulations is the so-called, microscopic distraction [48]. This consists in the natural
loss of information about individuals when macroscopic descriptions are adopted. Such
a problem is particularly relevant for scenarios in which control can only be performed
via actuation at the microscopic level.

As a paradigmatic example, we can think of a large swarm of mobile robots, that is
tasked to achieve some macroscopic spatial organization. In analogy with fluid-dynamics
[50], a large set of interacting particles may be macroscopically described in terms of the
spatio-temporal dynamics of the group’s density [14]. Although such a model compactly
describes the group’s spatial organization, it loses information about individual agents’
positions. This microscopic distraction is a problem to deal with in control applications,
where macroscopic control actions needs to be discretized into control inputs deployable
at the microscopic level. A conceptualization is provided in Fig. 2.1.

A possible way to exploit the nice scalability properties of macroscopic descriptions,
while dealing with the microscopic distraction phenomenon, is represented by continuifi-
cation (or continuation) methods1. Such a control paradigm has been recently introduced
in [26] and it consists in the pipeline in Fig. 2.2; specifically, the control design goes

1Although such methodologies were introduced under the name of “continuation” methods, we prefer to
refer to them using “continuification”, in order to clearly state the difference with the field of parametric
continuation and bifurcation theory.
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Chapter 2. Background

Figure 2.1: Microscopic vs macroscopic description for a swarm of kilobots [49] keeping
a regular formation in the bottom-left corner of some domain: the passage from micro to
macro allows not to account for the state of each kilobot (left box), in favour of a group
description focusing on their density (right box); the passage from micro to macro is
not easily reversible because of the lost information on the individuals’ robot behavior
(microscopic distraction).

through the following steps:

• continuification: derive a macroscopic description of the emerging behavior to
control in the form of a small set of PDEs, starting from an agent-based description
in the form of a set of ODEs or SDEs;

• macroscopic control design: use the macroscopic description of the emerging
behavior to control to develop a macroscopic control action with guarantees of
convergence;

• discretization: link the macroscopic control action with the microscopic control
inputs for controllable units of the complex system.

The continuification paradigm offers a natural framework to design control across
different description scales. In particular, the macroscopic description is derived starting
from its microscopic counterpart, and it is used to design a macroscopic control action.
The macroscopic scale gives a naturally scalable environment as it is independent from
the number of agents involved, and looks at the group as a single entity. Such formu-
lations can be utilized to derive analytical guarantees of convergence for the control
strategies, because they are more amenable to analyze with respect to their microscopic
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ODEs PDE

Controlled

PDE

Controlled

ODEs

Continuification

Macro control design

Discretization

Requirements Requirements

Figure 2.2: Continuification control pipeline: starting from an agent-based description,
through continuification, a PDEs model of the emerging behavior to control is derived;
such a model is used to develop a control strategy, that is then discretized onto the micro-
scopic dynamics of the agents; control requirements may enter both at the microscopic
and macroscopic scale.

counterparts. Macroscopic control strategies are then discretized into microscopic con-
trol inputs with ad-hoc methods to deal with the microscopic distraction phenomenon.
The continuification paradigm has been recently used for the synchronization control of
spin-torque oscillators [51] and for the stabilization of chains of coupled semiconductor
lasers [52].

In this Chapter, we categorize the Literature for the modeling and control of complex
systems using the continuification paradigm. In particular, we first present techniques for
linking microscopic descriptions of complex systems with the macroscopic description
of their emerging behaviors. Then, we go through the field of PDEs control, regarding the
macroscopic control design. Finally, we consider some techniques for the discretization
of macroscopic control inputs. A schematic overview of the Literature that is considered
in this Chapter is provided in Tab. 2.1. We want to remark that, as highlighted in Tab.
2.1, in this Thesis, we refer to continuification control when dealing with approaches
involving all the three steps schematized in Fig. 2.2. When referring to techniques to
perform the micro to macro step, we will as well use the term continuification.
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Chapter 2. Background

2.2 Continuification techniques
In this Section, we discuss the Literature on continuification techniques, consisting
of methodologies for deriving macroscopic descriptions of emerging behaviors from
microscopic agent-based models.

2.2.1 Mean-field approaches

The microscopic description of a set of 𝑁 undirectedly interacting dynamical systems is
typically in the form of (2.1). Assuming agents to be connected through a time-invariant
all-to-all topology (𝑎𝑖 𝑗 = 1, ∀ 𝑖 ≠ 𝑗), 𝑏𝑖 = 1 for each 𝑖 = 1, . . . , 𝑁 (all the agents are
controllable), and under suitable conditions on f (odd-symmetric and soft-core – see
[53] for more details), it is possible to derive a macroscopic description of the group
using mean-field theory [27, 28]. As in [53, 54], assuming 𝑁 → ∞, we can recast the
microscopic dynamics into the transport-diffusion equation2 for the density distribution
of the state of the system 𝜌 : Ω ⊆ R𝑛 × R≥0 → R≥0,

𝜌𝑡 (x, 𝑡) + ∇ · [𝜌(x, 𝑡) (V(x, 𝑡) + U(x, 𝑡))] = 𝐷∇2𝜌(x, 𝑡), (2.2)

where

V(x, 𝑡) =
∫
Ω

f (x − y)𝜌(y, 𝑡) dy = (f ∗ 𝜌) (x, 𝑦) (2.3)

is the macroscopic counterpart of the vector field describing agents’ all-to-all interactions,
and U is a macroscopic control action, accounting for u𝑖 in the continuum. Equation
(2.2) needs to be complemented with initial conditions, and boundary conditions so as
to guarantee some mass conservation principle, that is(∫

Ω

𝜌(x, 𝑡) dx
)
𝑡

= 0, (2.4)

is satisfied. Although agents are assumed to interact through an all-to-all topology,
usually, the function f is chosen such that it decays with |x− y|. For a group of swarming
agents/robots, this means that interactions decays with the distance between them, hence
approximating proximity interactions.

2Following [55], this PDE goes under the name of McKean-Vlasov equation; if the underlying microscopic
agents are non-interacting and deterministic (𝐷 = 0), such a PDE takes the name of Liouville equation [56];
when agents are non-interacting and stochastic, the PDE is referred as Fokker-Plank equation.

3As pointed out in Sec. 2.4 PdEs recast a set of ODEs, hence a discretization step is not explicitly needed.
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2.2. Continuification techniques

Literature overview on macroscopic modeling and control

C
ontinuification

control

Continuification

Mean-field theory
[53, 54, 57, 58]
[59, 60, 61, 62]

[63, 64, 65]

Graphons theory [66, 67, 68]
[69, 70]

techniques Finite Differences approximations [26, 51, 52]
PdEs [71, 72, 73]

Data-driven methods [74, 75, 76, 77]

Macroscopic control

Boundary [48, 52, 78, 79]
[80, 81]

In domain:

Mean-field optimal control [61, 82, 83, 84]
[60, 85, 86, 87]

Moving bottlenecks [88, 89]
design Ensemble control [56, 90, 91, 92]

Optimal transport [93, 93, 94]
Graphons control [67, 95, 96, 97]

PdEs control [71, 72, 73]
Discretization Finite difference discretization [26, 51, 52]

techniques PdEs discretization3 [71, 72, 73]

Table 2.1: Overview of the Literature about macroscopic modeling and control that is
considered in this Thesis. Notice that many techniques do not follow all the three steps
of the continuification control pipeline (continuification, macroscopic control design and
discretization).

This continuification technique is often utilized in the Literature, especially in those
problems regarding agents performing spatial organization tasks, e.g. [57, 58, 59, 60,
61, 62]. For instance, in the context of locust swarming, such continuum models have
been successfully used to derive analytical steady-state solutions for various kinds of
interaction functions f [53, 63, 64, 65]. More recently, such mean-field approximations
have been used to derive open-loop control protocols for large groups of swarming agents,
inspired by the ants’ collective behavior [98].

To summarize, mean-field approaches represents a viable option for performing the
continuification of large-scale complex systems, as, in the limit of an infinite number
of agents, they allow to recover tractable mass conservation laws as (2.2). The main
drawback of such technique is related to the (sometimes) limiting assumption about
having an all-to-all topology describing the scheme of interactions among the agents.
However, depending on the context, such an assumption is mitigated by choosing kernels
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Figure 2.3: Graphical interpretation of a graphon: on the left a bipartite half graph, in
the middle its representation through a pixel plot, on the right its associated graphon (this
figure is reproduced from [66]).

of interaction decaying with the distance. For instance, in this Thesis, we adopt mean-field
techniques for deriving macroscopic descriptions that are then used for control design.
This represents a reasonable choice because it well approximates agents interacting
through a proximity network, that is a common assumption when dealing with swarming
agents performing spatial organization tasks, as those we deal with here.

2.2.2 Graphons theory

Another continuification technique, which has its foundations in mean-field theory, is
the so-called graphon theory [99, 100]. In particular, within this context, it is possible
to derive macroscopic descriptions similar to (2.2), for agents interacting on network
topologies which are more complex than all-to-all ones. Specifically, a graphon is the
limiting object of a dense graph when the number of nodes goes to infinity (preserving the
topology). In particular, the nodes’ space is mapped to [0, 1] so that a weighted adjacency
matrix can be represented as a symmetric measurable function𝑊 : [0, 1]2 → [0, 1] (see
Fig. 2.3 for a graphical interpretation). Notice that the existence of a graphon is not
independent from the graph topology, thus the existence of a graphon 𝑊 is not ensured
for any arbitrary network of infinite nodes4.

If the topology in (2.1) is such that it can be expressed through a graphon, a macro-
scopic description for the system can be derived in the same form as (2.2). The only
difference is that, the graphon 𝑊 affects the definition of (2.3), that is, for the one-

4The existence of a graphon is proved, for instance, for Erodos-Renyi random topologies and complete
bipartite graphs (half graphs)
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dimensional case,

𝑉 (𝑥, 𝑡) =
∫ 1

0

∫
Ω

𝑊 (𝑥, 𝑧) 𝑓 (𝑥 − 𝑦)𝜌(𝑦, 𝑡) d𝑦d𝑧. (2.5)

For linear systems on graphons, the dynamics consistently simplifies (we refer the reader
to [66, 67] for more details).

Macroscopic graphons-based descriptions of dynamical systems have been used to
study synchronization of power networks in [68]. Specifically, after modeling nodes in
the power network as Kuramoto oscillators [69] on specific topologies, their macroscopic
description is derived. Moreover, graphons have been used to perform sensitivity analysis
of epidemics models [70], and model opinion dynamics [101]. The concept of graphons
has been recently extended to the more general idea of graphops [102, 103], which look
at graphs as operators.

Graphons represent a natural and elegant extension of mean-field approaches to
account for topological effects. However, only a small subset of topologies can be
accounted in such descriptions.

2.2.3 Finite difference approximations

Another possibility to perform the continuification of dynamical systems is the one
proposed in [26], and applied in [51, 52]. Therein, the key idea is to look at sets of
coupled linear dynamical systems as the discretization, through finite differences, of
some PDE. As a motivating example, we consider an infinite set of one-dimensional
agents with state 𝜌𝑖 ∈ R displaced on the real line at a constant distance Δ𝑥. Their
dynamics is set as

¤𝜌𝑖 =
1
Δ𝑥

(𝜌𝑖+1 − 𝜌𝑖) . (2.6)

Notice that each agent is interacting with the one ahead of it. Equation (2.6) can be
viewed as the discretization using forward finite differences of the transport PDE

𝜌𝑡 (𝑥, 𝑡) = 𝜌𝑥 (𝑥, 𝑡). (2.7)

This mechanism can be generalized to linear dynamical systems interacting on
spatially-invariant network topologies. In such a set-up, and with additional assumptions,
it can be proved that the continuified PDE converges, in spectrum, to the underlying sys-
tem of ODEs (see Theorem 2 in [26]). Many useful heuristic extensions were proposed
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in [26] to deal with nonlinear systems interacting on more general network topologies.
However, the micro-to-macro convergence is ensured only in the simple scenarios of
linear agents interacting on spatially-invariant network topologies.

2.2.4 Partial difference equations (PdEs)

In a similar vein to the technique in Sec. 2.2.3, the framework of partial difference
equations (PdEs) is introduced in [71, 72, 73], extending the results of [104]. In this
field, sets of ODEs can be recast into PdEs, which represents an intermediate level of
abstraction between ODEs and PDEs. Within this context, a class of complex multi-
agents systems (linear, with an arbitrary topology, and with diffusive coupling) is analyzed
and controlled with linear and non-linear techniques so as to achieve spatial organization.

As a paradigmatic example, systems in the form of (2.1) (fixing a time invariant
topology 𝑎𝑖 𝑗 (𝑡) = 𝑎𝑖 𝑗 , an homogeneous control action 𝑏𝑖 = 1, 𝐷 = 0, and diffusive
coupling f (x𝑖 , x 𝑗 ) = x 𝑗 − x𝑖) are recast as the PdE

¤x(𝑖, 𝑡) = Δx(𝑖, 𝑡) + u(𝑖, 𝑡), (2.8)

where 𝑖 ∈ {1, . . . 𝑁}, x(𝑖, 𝑡) = x𝑖 (𝑡), u(𝑖, 𝑡) = u𝑖 (𝑡), and

Δf (x) =
𝑁∑︁
𝑗=1
𝑎𝑖 𝑗

[
f (x 𝑗 ) − f (x𝑖)

]
is the Laplacian operator for PdEs.

It can be noticed that the paradigmatic PdE in (2.8) recasts a set of ODEs in a compact
form which mimics that of a PDE on a graph topology. What makes this framework
useful is that, by means of functional analysis, many mathematical tools for PDEs can be
generalized to PdEs, thereby enabling their rigourous and analytical study and intuitive
physics-based conjecturing about the underlying microscopic formation (see [71, 72] for
more details).

This mathematical set-up allows to perform the analysis and control of complex multi-
agent systems within a continuum framework that can preserve topological information
about the agents. However, assumptions about the linearity of the agents and the nature
of their coupling limits its applicability in context different from that of the control of
unmanned autonomous vehicles.
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2.2.5 Data-driven methods

A consistent amount of Literature is devoted to data-driven continuification methods, also
referred as PDEs discovery. In particular, starting from real or synthetic data, the aim
is to recover macroscopic models of emerging behaviors of complex systems. In [74], a
deep-learning method, namely PDE-READ, is developed to discover PDEs. The tool is
based on two neural networks. The first one is in charge of learning the system’s response,
while the second one needs to extract the PDEs macroscopic formulation, which is then
refined into a “human-readable” model via a parameter-free sparse regression. This
technique proved to be successful on a number of benchmark problems. Similarly, sparse
regression can be used to perform data-driven PDEs learning [75].

Manifold learning can also be used to understand which are the more relevant co-
ordinates of data, so to more effectively perform PDEs learning via neural networks
[105].

Currently, these data-driven methodologies have not been used in control applications
other than that performing bifurcation analysis with respect to parameters variations
[76, 77]. This is because the resulting macroscopic models cannot account for the
presence of terms to be fixed with a real-time feedback fashion.

2.3 Macroscopic control design

Once a macroscopic description of a large-scale complex system is derived in the form of
a small set of PDEs, it has to be controlled using methodologies developed in the context
of PDEs’ control [106]. Following the taxonomy in [106], the behavior of phenomena
that are described by infinite-dimensional systems can be managed with two possible
strategies

• in domain control, where actuation and sensing penetrate inside the domain of the
PDE system,

• boundary control, where sensing and actuation can be performed only through
the boundary conditions of the PDE.

Notice that boundary control is physically more realistic for phenomena that are intrinsi-
cally described by PDEs. For instance, in the framework of fluid dynamics, control and
measurements are typically performed through the vessel walls. On the other hand, for
PDEs that are derived as macroscopic descriptions of large-scale complex systems, it is
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reasonable to think about performing in domain control, as measurements and actuation
will be finally realized through agents moving in the PDE’s domain.

A general procedure for boundary control of linear PDEs in one-dimension is pre-
sented in [106]. It is based on backstepping, a framework which improves and gener-
alizes that of feedback linearization [107]. The idea of PDEs backstepping consists of
the following steps: (𝑖) identify undesirable terms in the PDE (that are those produc-
ing instabilities), (𝑖𝑖) choose a target system where undesirable terms are eliminated by
state transformations and feedback, (𝑖𝑖𝑖) find the state transformation in the form of a
Volterra operator (which naturally satisfies linear PDEs), (𝑖𝑣) design the boundary feed-
back to eliminate instabilities (the state transformation brings the undesirable terms on
the boundary so that they can be managed with boundary control). For instance, we can
consider the unstable reaction-diffusion equation in [0, 1] given by:

𝑢𝑡 (𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡) + 𝜆𝑢(𝑥, 𝑡)

𝑢(0, 𝑡) = 0

𝑢(1, 𝑡) = 𝑈 (𝑡)

(2.9)

where 𝜆 is an arbitrary constant and 𝑈 (𝑡) is the control input. The source of instability
is 𝜆𝑢(𝑥, 𝑡), and the idea of backstepping is to use the coordinate transformation

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) −
∫ 𝑥

0
𝑘 (𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 (2.10)

and the boundary control

𝑈 (𝑡) =
∫ 1

0
𝑘 (1, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 (2.11)

to transform (2.9) into the target system

𝑤𝑡 (𝑥, 𝑡) = 𝑤𝑥𝑥 (𝑥, 𝑡)

𝑤(0, 𝑡) = 0

𝑤(1, 𝑡) = 0

(2.12)

which is exponentially stable. The goal is then to find the “right" kernel 𝑘 (𝑥, 𝑦) verifying
(2.10) and (2.11) while satisfying a linear and easily solvable PDE (see [106] for further
details).

Boundary control has been successfully used in the context of continuification control
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(micro-to-macro, macroscopic control design, and the macro-to-micro). For instance,
in [52] the problem of stabilizing a chain of coupled semiconductor lasers is assessed,
while in [48, 80, 81] formation control problems are considered (both in leader-less
and leader-follower scenarios). Moreover, boundary control can be developed through
reinforcement learning techniques, among the open source platform controlgym [78, 79].

Among in-domain strategies, mean-field optimal control recently gained a lot of
momentum [82]. Within this framework, large sets of agents moving in some domain
are considered and, transport-diffusion equations5 are derived through mean-field theory
(see Sec. 2.2.1). Then optimization problems can be formulated so as to look for
optimal macroscopic control actions regarding some desired task to solve. Usually, the
convergence of the microscopic optimization problem into the macroscopic one, and the
existence of solutions of such optimal control problems can be proved, but nothing can
be said about their functional form (it cannot be granted that the solution is in a feedback
form, for example). Sometimes such optimal strategies are practically approximated by
sub-optimal ones using model predictive control methods [83, 84].

Such a framework has been extended to enhance sparsity in the control action [61],
explicitly accounting for additive noise in the agents dynamics [60], and assuming control
can be exerted only through some microscopic agents [85]. Moreover, mean-field optimal
control has been successfully used to tame crowd dynamics [86] and traffic control
problems [87], although not explicitly accounting for any discretization procedure for the
macroscopic control actions.

Similar optimal control problems arise in the context of ensemble control [56, 90,
91, 92]. Therein, PDE models are developed and controlled not to tame the curse
of dimensionality of large-scale systems, but to model class of systems sharing the
same structure but different parameters’ values. Moreover, analogous set-ups appear
in optimal transport of deterministic and stochastic agents [93, 94]. In this context,
the optimal controlled velocity field is analytically recovered, and it can be granted to
be in feedback form [93] (although in the case of non-interacting microscopic agents).
Such a macroscopic control action is indeed a function of the co-state equation for a
PDEs-constrained optimal control problem, which has not yet been solved in closed
form.

Within the field of traffic control, mean-field macroscopic descriptions have been
extended to account for moving bottlenecks [88, 89]. Therein, autonomous vehicles
moving in the continuum traffic flow exert control actions as mobile constraints limiting
the admissible traffic flow in specific regions.

5Diffusion is considered when noise affects the microscopic dynamics of the agents
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Still in the context of mean-field approximations of the microscopic dynamics of
large-scale complex systems performing a spatial organization task, in [98], a set of
continuous obstacles is displaced in the domain of interest so to achieve a desired
configuration. Therein, the stability of the proposed solution is not assessed.

When mean-field descriptions are improved with graphons to account for topological
structures different from all-to-all ones, some specific control frameworks have been
developed [67, 95, 96, 97]. In particular, assuming the microscopic agents’ dynamics to
be linear, traditional control strategies as linear quadratic (Gaussian) regulators can be
designed and applied.

When partial difference equations (PdEs) are used to perform the continuification
step, they can be combined with automatic control (both linear and nonlinear techniques)
to perform spatial organization tasks [71, 72, 73, 108]. Specifically, in that framework,
techniques such as Laplacian control and virtual forces are used to accomplish alignment,
containment, and formation control problems.

The field of macroscopic control design falls within that of PDEs’ control. For
historical and technological reasons, the largest part of the Literature about control
methodologies for PDEs involves the design of boundary control protocols. In-domain
techniques, instead, became popular more recently, when the idea of macroscopic model-
ing and control of complex systems spread out. The main limitation of existing in-domain
techniques is that they are developed without explicitly accounting for applicability con-
straints. For instance, in the mean-field optimal control community, the existence of
optimal solution is usually assessed, but the problem of how to encode them in a discrete
swarm of agents is not considered. We also remark that, in the Literature, optimal control
problems constrained by mean-field dynamics gained a lot of momentum, but, indeed,
less space has been given to other approaches, like the one which is considered in this
Thesis (see Chapter 3) in the context of a continuification control pipeline (where control
is developed with the idea of discretizing it into deployable control inputs).

2.4 Discretization
According to the continuification control scheme (see Fig. 2.2), once a macroscopic
control action is found, with, for instance, one of the techniques discussed in Sec. 2.3,
and ensures convergence, it needs to be discretized so as to compute deployable control
inputs for the controllable agents in some large collective.

The vast majority of the Literature about continuification and macroscopic control
design does not explicitly take into account the discretization step. However, it is
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fundamental to overcome the microscopic distraction phenomenon (see Fig. 2.1) and
effectively close a feedback loop across the microscopic and macroscopic scale.

In [26, 51, 52], where agents are assumed to interact on lattice spatially-invariant
topologies (see Sec. 2.2.3), the macroscopic control action is synthesized in the form of
a differential operator of the system’s state. Within this context, the continuum control
action can be discretized with an arbitrary scheme of finite differences (depending on
the specific spatially-invariant topology). For example, let us consider a large group
of single integrators equally displaced on the unit circle S, each of them displaced at
constant distance Δ𝑥 at some fixed position 𝑥𝑖 ∈ S with state 𝜌𝑖 ∈ R. Their macroscopic
description can be derived using the technique described in Sec. 2.2.3 as

𝜌𝑡 (𝑥, 𝑡) = 𝑢(𝑥, 𝑡), (2.13)

where 𝜌 is the macroscopic state and 𝑢 the macroscopic control action (to cope with the
periodic domain, boundary conditions are set so to make 𝜌 periodic). If we consider the
consensus problem of driving the agents’ state to the same constant value, say 𝐶, it is
easy to notice that, choosing the feedback action

𝑢(𝑥, 𝑡) = 𝜌𝑥𝑥 (𝑥, 𝑡), (2.14)

solves the problem (the error system 𝑒 = 𝐶 − 𝜌 takes the form of the heat equation
𝑒𝑡 = −𝑒𝑥𝑥 which globally asymptotically converges to 06). The macroscopic control
action (2.14) can be discretized with a central finite difference scheme, that is

𝑢𝑖 (𝑡) =
𝜌𝑖+1 (𝑡) − 2𝜌𝑖 (𝑡) + 𝜌𝑖−1 (𝑡)

Δ𝑥
, (2.15)

where 𝜌𝑖 (𝑡) = 𝜌(𝑥𝑖 , 𝑡). This leads to choosing the control action for the 𝑖-th agent as
a function of its state and that of its neighbors7. Different finite differences schemes
can be chosen to adapt to different (spatially invariant) networks topologies. For large
systems lying on non-spatially invariant networks (such as mobile robotic agents), the
same procedure can be adapted (see Section VI of [26] for a practical example).

We remark that control techniques that are developed in the context of PdEs [71, 72,

6Substituting (2.14) in (2.13), we get the heat equation 𝜌𝑡 = 𝜌𝑥𝑥 with periodic boundary conditions. At
steady-state, 𝜌 must be constant for periodicity reasons, and global stability can be proved fixing the Lyapunov
functional 𝑉 = ∥𝑒∥2

2 (see for instance [106]). It can be also proven that the consensus value 𝐶 is the integral
mean of the initial condition.

7Such a control action matches the microscopic counterpart of the problem, where, consensus for a group
of single integrators can be achieved by diffusive coupling with the neighbors.
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73] do not need to be explicitly discretized as they resemble the underlying microscopic
dynamics by construction (see Sec. 2.2.4).

In this Thesis we always derive macroscopic descriptions of large-scale complex
multi-agent systems by using mean-field arguments. This results in macroscopic models
in spatial coordinates which can be resembled as (2.2), where control is exerted through
the field U. The discretization of such a control action will be perceived with an
alternative procedure with respect to the ones shown in this Section. This consists in a
spatial sampling of U at the spatio-temporal locations where controllable agents are. This
methodology is also used in [98] for testing the proposed control solution in a discrete
framework.

2.5 Leader-follower control solutions
Orchestrating the collective spatial organization of multi-agent systems is crucial in fields
such as traffic control [109], collective additive manufacturing [110], synthetic biology
[111], swarm robotics [112], and environmental management [113]. Leader-follower
control strategies, where leader agents steer the behavior of a group of follower agents, are
widely applied in these areas and other control applications [10, 11, 114, 115, 116, 117].
For example, the use of controlled autonomous vehicles has been proposed to improve
traffic flows, avoiding stop-and-go waves and reducing emissions [15, 89]. In swarm
robotics and synthetic biology, leader-follower dynamics can facilitate the management
and regulation of large groups and cellular consortia [118, 119, 120, 121].

A key challenge is establishing analytical guarantees for achieving desired collective
tasks. For instance, in the shepherding control problem, it is crucial to determine
the optimal leader-to-follower ratios and sensing ranges to effectively manage group
dynamics and corral and contain the followers towards desired regions in the state
space [17, 122, 123, 124]. In complex multi-agent scenarios, microscopic models using
ordinary (stochastic) differential equations are often replaced by macroscopic models
using partial differential equations to simplify analysis and enhance control of spatial
organization on a large scale, avoiding its inherent curse of dimensionality [29, 30, 31,
48, 51, 52, 57, 58, 67, 98, 125, 126, 127].

Within the domain of mean-field optimal control, significant advances have been
made in addressing the well-posedness of macroscopic leader-follower formulations. In
particular, the influence of a relatively small set of microscopic agents on an infinite
population of followers is considered in [128] and [60], for deterministic and stochastic
followers, respectively. This results in a coupled system composed of ordinary (or
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2.6. Experimental validation of control solutions for large-scale multi-agent systems

stochastic) and partial differential equations. In [129] and [130], the group dynamics is
modeled via two coupled continuum equations for the densities of the two populations,
for stochastic and deterministic followers, respectively. The existence of an optimal
strategy is confirmed therein; however, explicit optimal solutions are not derived, nor
it is studied if these solutions are implementable through feedback control – a gap our
research aims to address.

The challenge of configuring followers into predefined structures, while varying the
information available to leaders, is discussed in previous works such as [131, 132, 133].
In these scenarios, the followers’ dynamics are typically represented by a heat equation,
which macroscopically models a consensus protocol [71, 72]. The boundary conditions
of this equation are controlled by leader agents. This setup examines the impact of
different levels of leader information on the effectiveness in directing follower groups
into desired formations.

The literature also highlights substantial contributions concerning networks of dis-
tributed parameter systems, often modeled by wave equations, as extensively discussed
in [134, 135], and related references. These studies develop strategies aimed at steering
these systems towards a consensus state.

In Chapter 5 and 6 of this Thesis, we present a macroscopic continuum model for
leader-follower spatial organization tasks. In such a context, we are able to recover
necessary and sufficient conditions regarding, for instance, the leaders-to-followers ratio
making the problem solvable, and we recover control actions in closed form ensuring
global (or local) guarantees of convergence.

2.6 Experimental validation of control solutions for large-
scale multi-agent systems

Several new techniques for the analysis and control of large-scale multi-agent systems
rely on the assumption that the interacting dynamical systems of the ensemble (agents)
are numerous enough to be described in a continuuum framework [26, 29, 30, 66, 67].

Recasting complex multi-agent systems into continuum formulations offers new op-
portunities for the analysis and design of novel control approaches to tame collective
dynamics. A pressing open challenge is to find agile methods to inform and experimen-
tally validate the synthesis of control algorithms developed in a continuum framework
[136], avoiding the inherent intense cost and hurdle of full-scale experiments with large-
scale systems.
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Full-scale experimental validation of control strategies for the control of large-scale
multi-agent systems have been recently carried out [43, 137, 138, 139, 140]. For instance,
in the seminal work [43], a swarm of over 1000 kilobots [49], has been behaviorally
programmed to displace according to desired spatial configurations. Also, in [140],
the same experimental set-up leveraging kilobots has been used to solve the task of
collectively transporting complex objects. However, the majority of the existing control
solutions have been tested only using computer simulations due to practical limitations.

In the apparently disjoint field of disability studies, researchers developed virtual
reality environments to create digital twins of patients, and systematically test new
techniques to assist them. Specifically in [141, 142], new assistive technologies for
visually impaired persons were developed and tested on a sample of healthy subjects
equipped with different kinds of virtual visual impairment. Similarly, in the field of
animal behavior research [143, 144, 145, 146], virtual replicas or robots mimicking
animals have been used to enhance the understanding of their behavior.

Bringing insights from these fields, it is possible to use virtual reality to perform
experiments with robots. Interesting mixed reality settings have been presented in [147,
148, 149], where, real robots interact with simulated replicas in a shared environment.
With a similar fashion, in the field of swarm robotics, augmented reality has been used
to provide simple testbed agents, like kilobots, with augmented sensing capabilities
[150, 151], in order to let them solve more complex tasks.

All these experimental set-ups leveraging virtual reality are not explicitly developed
to reduce the intense cost of full, large-scale experiments. Hence, a current gap in
the literature is to develop an experimental platform for avoiding the bottleneck of
extreme time cost and resources of experiments of large-scale systems. Such a platform
should be (𝑖) flexible with respect to the kinematic/dynamical model of the virtual robots
to integrate, and not be constrained to specific commercial robots, and (𝑖𝑖) easy to
implement using existing open-source facilities, like the Robotarium at GeorgiaTech
[152]. In Chapter 7 of this Thesis, we present a mixed reality platform tackling these
open problems, providing also a hybrid experimental validation of the methodologies
developed in Chapter 3 and 5.
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2.7 Discussion

In this Chapter, we reviewed the relevant Literature regarding the broad area of modeling
and control of large-scale complex systems. Specifically, we used the continuification
control paradigm (see Fig. 2.2) to categorize solutions for multi-scale control problems.
In particular, we divided the Literature using the three fundamental steps of continuifica-
tion control [26], namely (𝑖) continuification, i.e. the passage from the microscopic to the
macroscopic scale, (𝑖𝑖) macroscopic control design, that is the design of control actions
for PDEs describing large-scale complex systems in the continuum, and (𝑖𝑖𝑖) discretiza-
tion, that consist in methodologies overcoming the microscopic distraction phenomenon,
linking macroscopic control actions to microscopic, deployable control inputs.

We wish to highlight that continuification through mean-field provides a more general
approach to perform the micro-to-macro step in spatial organization tasks. In particular,
it ensures micro-to-macro convergence in the limit of an infinite number of agents, and
although formally assuming microscopic all-to-all interactions, it can naturally approxi-
mate proximity nonlinear topologies via choosing interaction functions whose intensity
decays with the distance (see for example, the Morse or Lennard-Jones potentials). In
such a context, a lot of interest has been given to mean-field optimal control, although
not explicitly accounting for the discretization step. Less effort has been made for devel-
oping macroscopic control solutions which are not based on the solution of optimization
problems. For these reasons, in this Thesis, we focus on mean-field continuification to
derive macroscopic descriptions, which we then use to derive control solutions that are
not in the context of optimal control.

We further point out that the vast majority of the Literature (except for [26] and
related works, and methods involving PdEs [71, 72]) does not explicitly account for the
macro-to-micro step, hence not providing discretization tools for macroscopic control
actions. This significantly limits the applicability of existing solutions in real-world
applications. In this Thesis, we propose a simple novel discretization method based on
spatial sampling.

We also carried out a Literature review on large-scale leader-follower solutions,
accounting for scenarios in which control can only be exerted on a subset of agents in the
complex system. In such a framework, Literature lacks analytical conditions to guide the
control design process, for instance, what the right leaders-to-followers ratio could be,
or what leaders’ minimal sensing/actuation capabilities are required to achieve control.

Finally, we discussed related work on the experimental testing of control solutions
for large-scale systems. Within this context, we highlighted the emerging and promising
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field of virtual/mixed reality to create hybrid experimental platforms. Within the context
of swarm robotics problems, such platforms can leverage real robots and virtual ones, to
deal with the increasing resources demand and cost of full-scale experiments.

In the next Chapter we introduce our continuification control framework. Such a
mathematical set-up is developed in the context of a density control task for a large group
of nonlinear agents. In order to tackle this problem, we derive a continuum description of
the system dynamics in terms of a PDE, which we then use to perform our macroscopic
control design. Such a continuum action can be proven to ensure convergence towards
the desired behavior. This action is ultimately discretized following the paradigm that is
depicted in Fig. 2.2.
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3 Continuification Control of
Large-Scale Multi-Agent Sys-
tems

In this Chapter, we discuss the continuification based control framework we developed
in [29, 31]. Specifically, we propose a method to tackle multi-scale control problems
involving large-scale multi-agent systems swarming in a periodic domains of arbitrary
size. In particular, we use a continuification-based approach (see Fig. 2.2 for a schematic)
that transforms the microscopic, agent-level description of the system dynamics into a
macroscopic, continuum-level representation, which we employ to synthesize a control
action towards a desired distribution of the agents. The continuum-level control action
is then discretized at the agent-level in order to practically implement it. To confirm
the effectiveness of the proposed approach, we complement theoretical derivations with
numerical simulations.

3.1 Introduction

A pressing open challenge in control theory is to find methods to steer the collective
behavior of large-scale multiagent systems consisting of many dynamical units (or agents)
interacting with a given, and possibly time-varying, network topology. Examples of
this problem include multirobot systems [22, 43, 44], cell populations, [45, 46], and
human networks [10, 47]. Typically, in these applications, the goal is to control some
macroscopic observables of the emerging collective behavior. However, control needs
to be practically exerted at the microscopic, individual agent-level. Developing methods
that translate macroscopic-level control goals into microscopic-level control actions is a
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critical challenge [153].
In Statistical Physics [27, 28], mean-field approaches are often used to describe

large-scale systems. Through a mean-field approximation, one can obtain a macroscopic
description of the emergent behavior of the system in terms of appropriate distributed
parameter models, derived from the microscopic ODEs models describing the agents’
dynamics. Such mean-field approaches have been used to control the collective behavior
of multiagent systems [86, 154, 155, 156]. Also, in Applied Mathematics, problems
related to the control of crowds, herding, and flocking agents were solved by finding
a mean-field description of the agents of interest [60, 86]. Macroscopic descriptions
were also used in some multiagent reinforcement learning scenarios [157, 158]. Other
methodologies recently proposed in the literature are based on the use of graphons [95]
and data and manifold learning [159, 160]. For a more detailed discussion about methods
for lifting complex systems from microscopic to macroscopic descriptions, we refer the
reader to Section 2.2 of this Thesis.

Inspired by the paradigm proposed in [26], here we adopt a continuification approach
in which a macroscopic model, derived from the agents’ dynamics, is used to design
a control strategy at the macroscopic level. Such a macroscopic control action is then
discretized in order to be deployed on the agents at the microscopic level – see Fig. 2.2
for a schematic of the proposed control solution. As a representative case of study,
we address the problem of steering the dynamics of a group of interacting agents on a
periodic domain. Our goal is to control the agents so that they achieve some desired
configuration, independently of their interactions (repulsive, attractive, etc.) and their
initial configuration. Such a problem has important ramifications in traffic dynamics
[161, 162], swarming robots [154], and natural systems, including animals’ collective
motion [53, 64, 127, 163, 164, 165], and cell populations [46].

After presenting the microscopic description of the agents’ behavior, we derive a
macroscopic, PDE model for their emergent behavior and we solve the problem of
designing a control strategy to achieve a desired agents’ configuration. We propose a
mathematical proof of convergence at the macroscopic level, and then we discretize the
control action to obtain the required control inputs acting on the individual agents. In
contrast with [26], the microscopic control inputs are obtained by spatially sampling
the macroscopic control action at the agents’ positions. Theoretical derivations are
complemented by numerical simulations validating the effectiveness and robustness of
the proposed strategy.

This Chapter is organized as follows. In Section 3.2 we present the microscopic
model of interest; then, in Section 3.3 and 3.4, we give the problem statement and our
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solution exploiting continuification; finally, numerical results are presented and discussed
in Section 3.5, and conclusions are drawn in Section 3.6.

3.2 The model

We consider 𝑁 dynamical systems moving in the periodic cube Ω (𝑑 = 1, 2, 3) (see Def.
1.1). The agents’ dynamics is modeled using the kinematic assumption [53, 166] (i.e.,
neglecting acceleration and considering a drag force proportional to the velocity) and
assuming agents are not subject to any non-holonomic constraint. Specifically, we set

¤x𝑖 =
𝑁∑︁
𝑘=1

f ({x𝑖 , x𝑘}) + u𝑖 , 𝑖 = 1, . . . , 𝑁, (3.1)

where x𝑖 ∈ Ω is the 𝑖-th agent’s position, and {x𝑖 , x𝑘} is the relative position between agent
𝑖 and 𝑘 , wrapped to have values in Ω, f : Ω → R𝑑 is a periodic velocity interaction kernel
modeling pairwise interactions between the agents, and u𝑖 is a velocity control input
designed as to fulfill some control problem. Furthermore, we assume f (z) = −∇𝐹 (z),
where 𝐹 : R𝑑 → R is a soft-core potential, meaning that f (0) = 0. The Morse potential,
vastly used in the literature [53, 167], is a choice of this kind. We remark that, in the
absence of control, agents subject to a repulsive kernel will spread in Ω until reaching an
equilibrium configuration. Agents subject to a Morse-like kernel (long-range attraction
and short-range repulsion), will reach an aggregated compact formation (see [53] for a
comprehensive description of the uncontrolled problem with 1D examples).

Assuming the number of agents 𝑁 is sufficiently large, we describe the system’s
collective behavior in terms of the spatio-temporal evolution of the swarm’s density.
Hence, we define the density at time 𝑡 as the scalar function 𝜌 : Ω × R≥0 → R≥0, such
that

∫
Ω
𝜌(x, 𝑡) dx = 𝑁 and the integral over a subset of Ω returns the number of agents in

it.

3.3 Problem statement

The problem is to select a set of distributed control inputs u𝑖 acting at the microscopic,
agent-level allowing the agents to organize themselves into a desired macroscopic config-
uration on Ω. Specifically, given some desired periodic smooth density profile, 𝜌d (x, 𝑡),
associated with the target agents’ configuration, the problem can be reformulated as that
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of finding a set of distributed control inputs u𝑖 , 𝑖 = 1, 2, . . . , 𝑁 in (3.1) such that

lim
𝑡→∞

∥𝜌d (·, 𝑡) − 𝜌(·, 𝑡)∥2 = 0, (3.2)

for agents starting from any initial configuration x𝑖 (0) = x𝑖0, 𝑖 = 1, 2, . . . , 𝑁 .

3.4 Control design
We describe next how each of the steps depicted in Fig. 2.2 can be implemented to solve
the problem of interest.

3.4.1 Continuification

In the limit case of an infinite number of agents, we recast the microscopic dynamics of
the agents (3.1) as the mass balance equation (see Sec. 2.2.1 for more details about the
micro-to-macro lifting)

𝜌𝑡 (x, 𝑡) + ∇ · [𝜌(x, 𝑡)V(x, 𝑡)] = 𝑞(x, 𝑡), (3.3)

where

V(x, 𝑡) =
∫
Ω

f ({x, z}) 𝜌(z, 𝑡) dz = (f ∗ 𝜌) (x, 𝑡). (3.4)

represents the characteristic velocity field encapsulating the interactions between the
agents in the continuum. The scalar function 𝑞, represents the macroscopic control
action. It is written as a mass source/sink for simplifying derivations, but it will be, in
the end, recast as an additional velocity field, in accordance to the microscopic dynamics
(3.1).

For (3.3) to be well posed, we require the periodicity of 𝜌(x, 𝑡) on 𝜕Ω ∀𝑡 ∈ R≥0 and
that 𝜌(x, 0) = 𝜌0 (x). We remark that V is periodic by construction, as it comes from
a circular convolution. Thus, the periodicity of the density is enough to ensure mass
is conserved when 𝑞 = 0, i.e.,

(∫
Ω
𝜌(x, 𝑡) dx

)
𝑡
= 0 (using the divergence theorem and

exploiting the periodicity of the flux).

Remark 3.1. We do not assume the agents’ dynamics to be linear and interactions to
take place on a spatially-invariant lattice as done in [26], where some useful heuristics
extensions to nonlinear systems and different topologies are presented.
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3.4.2 Macroscopic control design

We assume the desired density profile obeys the mass conservation law

𝜌d
𝑡 (x, 𝑡) + ∇ ·

[
𝜌d (x, 𝑡)Vd (x, 𝑡)

]
= 0, (3.5)

where

Vd (x, 𝑡) =
∫
Ω

f ({x, z}) 𝜌d (z, 𝑡) dz = (f ∗ 𝜌d) (x, 𝑡). (3.6)

Periodic boundary conditions and initial condition for (3.5) are set similarly to those of
(3.3). Furthermore, we define the error function 𝑒(x, 𝑡) := 𝜌d (x, 𝑡) − 𝜌(x, 𝑡).

Theorem 3.1 (Macroscopic convergence). Choosing

𝑞(x, 𝑡) = 𝐾p𝑒(x, 𝑡) − ∇ ·
[
𝑒(x, 𝑡)Vd (x, 𝑡)

]
− ∇ · [𝜌(x, 𝑡)Ve (x, 𝑡)] , (3.7)

where 𝐾p is a positive control gain and Ve (x, 𝑡) = (f ∗ 𝑒) (x, 𝑡), the error dynamics
globally exponentially converges to 0

𝑒(x, 𝑡) = 𝑒(x, 0)exp{−𝐾p𝑡} (3.8)

Proof. We can compute the error dynamics by subtracting (3.3) from (3.5), resulting in

𝑒𝑡 (x, 𝑡) + ∇ ·
[
𝜌d (x, 𝑡)Vd (x, 𝑡)

]
− ∇ · [𝜌(x, 𝑡)V(x, 𝑡)] = −𝑞(x, 𝑡). (3.9)

The error function 𝑒(x, 𝑡) is periodic on 𝜕Ω ∀𝑡 ∈ R≥0 and 𝑒(x, 0) = 𝜌d (x, 0) − 𝜌(x, 0).
Then, taking into account that 𝜌 = 𝜌d − 𝑒, and V = Vd − Ve, we rewrite (3.9) as

𝑒𝑡 (x, 𝑡) + ∇ ·
[
𝑒(x, 𝑡)Vd (x, 𝑡)

]
+ ∇ · [𝜌(x, 𝑡)Ve (x, 𝑡)] = −𝑞(x, 𝑡). (3.10)

Plugging in (3.7), we get

𝑒𝑡 (x, 𝑡) = −𝐾p𝑒(x, 𝑡), (3.11)

whose analytical solution lets (3.8) holds. ■

Remark 3.2. The control action 𝑞 transforms the error dynamics in the form in (3.11)
via appropriate cancellations of the macroscopic system dynamics. Moreover, 𝑞 is
characterized by the non-local term Ve, whose definition involves the convolution with the
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interaction kernel f and the error 𝑒. The presence of such a term implies that the control
action exerted at the position x depends on the error everywhere else in the domain,
implicitly pointing at the necessities for unlimited sensing capabilities for the agents. This
non-locality is practically smoothed by the vanishing nature of the interaction kernel,
and robustness with respect to limited sensing capabilities is considered in Chapter 4.

3.4.3 Discretization and microscopic control

In order to discretize the macroscopic control action 𝑞, we first recast the macroscopic
controlled model as

𝜌𝑡 (x, 𝑡) + ∇ · [𝜌(x, 𝑡) (V(x, 𝑡) + U(x, 𝑡))] = 0, (3.12)

where U is a controlled velocity field, in which we want to incorporate the control action.
Equation (3.12) is equivalent to (3.3), if

∇ · [𝜌(x, 𝑡)U(x, 𝑡)] = −𝑞(x, 𝑡). (3.13)

When 𝑑 = 1, this relation simplifies to (𝜌𝑈)𝑥 = −𝑞 (𝑈 being the one dimensional
version of U), which can be spatially integrated to recover 𝑈. When 𝑑 > 1, equation
(3.13) is insufficient to uniquely determine U from 𝑞 since it represents only a scalar
relationship (as the divergence returns a scalar function). Hence, we define the flux
w(x, 𝑡) := 𝜌(x, 𝑡)U(x, 𝑡), and close the problem by adding an extra differential constraint
on the curl of w. Namely, we consider the set of equations

∇ · w(x, 𝑡) = −𝑞(x, 𝑡)

∇ × w(x, 𝑡) = 0
(3.14)

For problem (3.14) to be well posed, we require w(x, 𝑡) to be periodic on 𝜕Ω. Notice that
(3.14) is a purely spatial problem, as no time derivatives are involved. We also remark
that the choice of closing the problem using the irrotationality condition is arbitrary, and
other closures can be considered. This specific one allows not to introduce vorticity into
the velocity field we are looking for. Since Ω is simply connected, and ∇ × w = 0, we
can express w using the scalar potential 𝜑. Specifically, we pose w(x, 𝑡) = −∇𝜑(x, 𝑡),
making the zero-curl condition always fulfilled. Then, substituting this into the divergence
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relation in (3.14), we can recast (3.14) as the Poisson equation

∇2𝜑(x, 𝑡) = 𝑞(x, 𝑡). (3.15)

Problem (3.15) is characterized by the periodicity of ∇𝜑(x, 𝑡) on 𝜕Ω. We wish to
remark the analogy with the derivation of the Poisson equation in the context of the
electrostatic field [42]. Equation (3.15), together with its boundary conditions, defines
𝜑 up to a constant 𝐶. Since we are interested in computing w = −∇𝜑, the value of 𝐶
is irrelevant. We solve the Poisson problem (3.15) in Ω using Fourier series expansion.
Then, writing the Fourier series of 𝜑 in Ω, we get

𝜑(x) =
∑︁

m∈Z𝑑

𝛾m e 𝑗m·x + 𝐶, (3.16)

where m is a multi-index, m is the row vector associated to this multi-index, 𝛾m is the
m-th Fourier coefficient, 𝑗 is the imaginary unit, and x is assumed to be a column. Given
this expression for the potential, we write its Laplacian as

∇2𝜑(x) =
∑︁

m∈Z𝑑

𝛾m∥m∥2
2e 𝑗m·x. (3.17)

Next, we can apply Fourier series to the known function 𝑞, resulting in

𝑞(x) =
∑︁

m∈Z𝑑

𝑐m e 𝑗m·x, (3.18)

where, since at time 𝑡 the function 𝑞 is known, we can also express the coefficients as

𝑐m =
1

(2𝜋)𝑑

∫
Ω

𝑞(x)e− 𝑗m·x dx. (3.19)

Then, recalling (3.15), we can express the coefficients of the Fourier series of the potential
𝜑 as

𝛾m = − 𝑐m

∥m∥2 . (3.20)

Hence w = −∇𝜑 and, consequently, U = w/𝜌. Such derivations need to take place
at each 𝑡. From the implementation viewpoint, when computing 𝜑, and consequently w,
we approximate it only considering the first 𝑀 (with 𝑀 sufficiently large) terms of the
infinite summations in (3.16).
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Then, we can compute the microscopic control inputs for the discrete set of agents
by spatially sampling U(x, 𝑡), that is

u𝑖 (𝑡) = U(x𝑖 , 𝑡), 𝑖 = 1, 2, . . . , 𝑁. (3.21)

Notice that our discretization procedure is different from the one that is proposed in [26].

Remark 3.3. The macroscopic control action 𝑞 is based on non-local terms like Vd and
Ve, making the control action exerted at x depending on the error everywhere else in Ω.
The input u𝑖 can be approximated in terms of local information, since the assumption
of unlimited sensing is practically mitigated by assuming a vanishing interaction kernel.
We refer to Chapter 4 for analytical results about stability with limited sensing.

Remark 3.4. The macroscopic velocity field U is well-defined only when 𝜌 ≠ 0. This is
indeed a fair assumption, as finally we will estimate the density by the agents position
with an estimation kernel of our choice. Moreover, as U will be sampled at the agents
locations, i.e. where the density is different from 0, we know U is well defined where it is
needed.

3.5 Numerical validation
In this Section we perform the numerical validation of the proposed control methodology.
We consider two possible scenarios: the case that agents move on the ring (𝑑 = 1), and
the case that agents move on the periodic square (𝑑 = 2). In both scenarios, we consider
agents to start from a constant density profile, that is 𝜌(x, 0) = 𝑁/(2𝜋)𝑑 .

For each simulation trial, we consider two different set-ups. First, we consider a
continuum framework, consisting of the numerical integration of (3.12) (see Appendix
D for more details about the numerical integration), thus letting the hypothesis of an
infinite number of agents hold. Notice that, in this case, the discretization procedure
described in Section 3.4.3 is not needed. Then, we consider the discrete scenario, where
problem (3.1) is numerically integrated. In this discrete framework, we discretize the
spatial domain into 𝑛 grid points. Agents are not constrained to move on such grid points,
so that we use a linear interpolation of U when computing u𝑖 . For estimating densities
from the agents’ positions, we use a Gaussian msn (minimum of standard deviation
and interquantile range) kernel estimation, adapted to the circular domain, as in [168].
Looking at both the continuum and discrete case allows to understand how using the
continuum hypothesis for the control design perform when finally considering finite size
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swarms.
The performance of each trial is assessed in terms of the percentage error

𝐸̄ (𝑡) =
∥𝑒(·, 𝑡)∥2

2

max𝑡 ∥𝑒(·, 𝑡)∥2
2

100. (3.22)

The value of 𝐸̄ at the end of the trial is the remaining percentage L2 error. Trials
are also characterized using the Kullback-Leibler (KL) divergence or relative entropy
[169], as often done for density control problems [170]. Specifically, we consider the
KL divergence between the desired and effective density of the swarm (re-normalized
to sum to 1). Given, 𝜌̂ and 𝜌̂d, that are analogous to the actual and desired density but
normalized to 1, the KL divergence is defined as

𝐷KL (𝑡) =
∫
Ω

𝜌̂d (x, 𝑡) log
(
𝜌̂d (x, 𝑡)
𝜌̂(x, 𝑡)

)
dx. (3.23)

This is a non-negative quantity with the case 𝐷KL = 0 meaning that the information
embedded in both the densities is identical.

3.5.1 Simulations on the ring

We consider a group of 𝑁 = 100 agents interacting on the ring through a periodic
repulsive interaction kernel

𝑓 (𝑧) = sgn(𝑧)
e 2𝜋

𝐿 − 1

[
e

2𝜋−|𝑧 |
𝐿 − e

|𝑧 |
𝐿

]
, (3.24)

where 𝐿 is the characteristic length scale1. For all the simulation trials we consider
𝐿 = 1. We also fix 𝐾p = 10.

As desired density we consider the von Mises distribution

𝜌d (𝑥, 𝑡) = 𝑁e𝑘 cos(𝑥−𝜇 (𝑡 ) )

2𝜋𝐼0 (𝑘)
, (3.25)

where 𝜇 is the mean, 𝑘 is the concentration coefficient, 𝑁 is used to let the desired density
sum to the total number of agents and 𝐼0 is the modified Bessel function of the first kind
of order 0 [171].

1This periodic kernel can be derived via periodization of the non-periodic repulsive kernel 𝑓 (𝑧) =

sgn(𝑧)e−
|𝑧 |
𝐿 (see Appendix A for more details).
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(a) 𝑡 = 0 (b) 𝑡 = 2

(c) (d)

Figure 3.1: Monomodal regulation (𝑑 = 1): (a-b) initial and final configuration of
the swarm (on the left, agents’ displacement; on the right, estimated density in blue
and desired density in orange); (c) time evolution of the percentage error (blue for the
continuum trial, orange for the discrete one); (d) time evolution of the KL divergence
(blue for the continuum trial, orange for the discrete one).

Monomodal regulation As a first simulation trial, we consider a rendez-vous problem,
where agents need to meet and stay at a fixed location in the domain. This consists of
fixing the desired density to be that in (3.25) with 𝜇 = 0 and 𝑘 = 1.5. Results of this
trial, are reported in Fig. 3.1. In particular, the initial and final swarm’s configuration are
reported in Fig. 3.1a and 3.1b, both in terms of agents’ displacement in S and estimated
density. The performance of the trial is reported in Fig. 3.1d and 3.1c, showing both the
percentage error and KL divergence are brought to 0, in the continuum (blue line) and
discretized (orange line) framework. For this specific case, it is impossible to catch any
difference between the continuum and discrete framework, highlighting the suitability of
the continuum hypothesis.
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(a) 𝑡 = 0 (b) 𝑡 = 2

(c) (d)

Figure 3.2: Multimodal regulation (𝑑 = 1): (a-b) initial and final configuration of
the swarm (on the left, agents’ displacement; on the right, estimated density in blue
and desired density in orange); (c) time evolution of the percentage error (blue for the
continuum trial, orange for the discrete one); (d) time evolution of the KL divergence
(blue for the continuum trial, orange for the discrete one).

Multimodal regulation Still in the vein of a rendez-vous problem, we consider a
bimodal regulation task, consisting tasking agents to meet at two different locations in
S. We fix the desired density to be the composition of two von Mises distributions as
(3.25), the first one characterized by 𝜇1 = −𝜋/2 and 𝑘1 = 5, the second one by 𝜇2 = 𝜋/2
and 𝑘2 = 5.

Results of this trial, are reported in Fig. 3.2. In particular, the initial and final swarm’s
configuration are reported in Fig. 3.2a and 3.2b, both in terms of agents’ displacement
in S and estimated density. The performance of the trial is reported in Fig. 3.2d and
3.2c, showing both the percentage error and KL divergence are brought to 0. For this
numerical trial, we observe that in the discrete scenario, convergence is achieved slower
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(a) 𝑡 = 0 (b) 𝑡 = 2

(c)

Figure 3.3: Monomodal tracking (𝑑 = 1): (a) time evolution of 𝜇; (b) time evolution of
the percentage error (blue for the continuum trial, orange for the discrete one); (c) time
evolution of the KL divergence (blue for the continuum trial, orange for the discrete one).

than in the continuum case.

Monomodal tracking Here we consider a macroscopic version of a formation control
problem. In particular, we fix the desired density to be that in (3.25), with 𝑘 = 1.5 and
a time varying mean 𝜇, whose time evolution is reported in Fig. 3.3a. In particular, it is
fixed to 0 for the first quarter of the trial, then it linearly increase in time, to finally settle
about 0.

The performance of the trial is characterized in Fig. 3.3b and 3.3c, both in terms of
percentage error and KL divergence. We remark that, although at the end of the trial it is
impossible to spot differences between the continuum and the discrete case, during the
transient, we observe a degradation in the performance for the discrete set-up.
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(a) 𝑡 = 0 (b) 𝑡 = 2

(c)

Figure 3.4: Multimodal tracking (𝑑 = 1): (a) time evolution of 𝜇; (b) time evolution of
the percentage error (blue for the continuum trial, orange for the discrete one); (c) time
evolution of the KL divergence (blue for the continuum trial, orange for the discrete one).

Multimodal tracking Finally we consider a multimodal tracking problem, consisting in
fixing the desired density as the combination of two time-varying von Mises distributions
as (3.25). Specifically, we fix the concentration coefficients of the two distributions to be
𝑘1 = 𝑘2 = 5, while we choose their means, namely 𝜇 and 𝜈, to behave as in Fig. 3.4a.
This means the two modes start centered at −𝜋/2 and 𝜋/2, and then start orbiting at fixed
velocity on S until they go back to their initial location.

Results of this trial are reported in Fig. 3.4 and they are qualitatively similar to
those of the monomodal tracking case. In particular, convergence is achieved both in
the continuum and discrete case, but the transient performance and convergence time are
better in the continuum framework.
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(a) (b)

(c) (d)

Figure 3.5: Monomodal and multimodal regulation (𝑑 = 2): (a, c) Final displacement of
the swarm against the desired density; (b, d) time evolution of the KL divergence for the
continuum (blue line) and discrete (orange line) set-up.

3.5.2 Simulation on the periodic square

In this section we consider agents move on the periodic square, that is Ω = [−𝜋, 𝜋]2.
We assume a group of 100 agents, whose interaction are governed by a repulsive kernel
with characteristic length scale 𝐿 = 1. Notice that, contrary to the one dimensional case,
a closed form of the periodic repulsive kernel was not found2, so that it needs to be
approximated as described in Appendix A.

As for the desired density to achieve, we choose the 2D von Mises function

𝜌d (x) = 𝑍 exp{k𝑇 c1 (x, 𝜇, 𝜈) + c2 (x, 𝜇, 𝜇) c𝑇2 (x, 𝜈, 𝜈)} (3.26)

2we tried to seek for the periodization of

f (x) =
{

x
∥x∥ e−

∥x∥
𝐿 if ∥x∥ ≠ 0

0 otherwise.

44



Chapter 3. Continuification Control of Large-Scale Multi-Agent Systems

where k = [𝑘1, 𝑘2]𝑇 is the vector of the concentration coefficients, 𝜇 and 𝜈 are the
means along the two directions, c1 (x, 𝑎, 𝑏) = [cos(𝑥1 −𝑎), cos(𝑥2 − 𝑏)] and c2 (x, 𝑎, 𝑏) =
[cos(𝑥1 − 𝑎), sin(𝑥2 − 𝑏)] (with 𝑎, 𝑏 ∈ Ω), where 𝑥1 and 𝑥2 are the components of x in
the Cartesian coordinate system. 𝑍 is a normalization coefficient, to allow 𝜌d to sum to
the total number of agents 𝑁 .

As for the one-dimensional numerical validation, we consider both the continuum
and discrete framework underlying the problem of interest. Here, for brevity, trials are
characterized using the KL divergence only.

Monomodal regulation For this trial we fix the desire density as (3.26) with 𝜇 = 𝜈 = 0
and 𝜅1 = 𝜅2 = 1.5, mimicking a two-dimensional rendez-vous task.

The final configuration of the group is displaced in Fig. 3.5a, while the time evolution
of the KL divergence for the continuum (blue line) and discrete (orange line) framework
is shown in Fig. 3.5b. While for the continuum case the KL divergence is brought to 0
in almost 1 time unit, we observe a steady-state mismatch for the discrete trial.

Multimodal regulation Here we choose desire density the combination of four distri-
butions as that in (3.26). The concentration coefficients of all the modes is set to 2, and
the mean values are 𝜇1 = 𝜇2 = −𝜋/2, 𝜇3 = 𝜇4 = 𝜋/2, 𝜈1 = 𝜈2 = 𝜋/2, and 𝜈3 = 𝜈4 = 𝜋/2.
This desired density consists of four clusters of agents symmetrically displaced around
the origin. The final formation is reported in Fig. 3.5c, while the time evolution of the
KL divergence is shown in Fig. 3.5d.

As for the monomodal regulation case, we report a steady-state mismatch between
the continuum and discrete numerical trial.

Monomodal tracking We consider a monomodal tracking scenario, where the desired
density is a 2D von Mises function, whose means are time varying, see (3.26). Specif-
ically, we consider 𝜇(𝑡) and 𝜈(𝑡) behaving as in Fig. 3.6a, while the concentration
coefficients are kept constant and equal to 1. Such a desired density is centered at the
origin for 𝑡 ≤ 1. Then, it starts moving at constant velocity towards a side of the domain
and then on the circle of radius 𝜋/2. We report the results of the trial in Fig. 3.6b, where
the KL divergence in time is shown.
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(a) (b)

(c) (d)

Figure 3.6: Tracking experiments. (a, c) Time evolution of the means of the monomodal
and multimodal trial, (b, d) KL divergence in time during the monomodal and multimodal
tracking trial (blue line for the continuum framework, orange line for the discrete one).

Multimodal tracking We consider a multimodal tracking case, where two von Mises
functions with constant concentration coefficients of 2.2 orbitate on the circle of radius
2𝜋/3, after remaining still at two sides of the domain for 𝑡 ≤ 1. Specifically, 𝜇1 (𝑡), 𝜈1 (𝑡)
and 𝜇2 (𝑡), 𝜈2 (𝑡), the means of the two von Mises functions, evolve as in Fig. 3.6c. Such
a desired behavior consists of two clusters of agents orbitating on a circle. Results are
reported in Fig. 3.6d, where the time evolution of the KL divergence is also shown.
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3.5.3 Results

We performed an extensive numerical validation consisting of two main scenarios, the
one-dimensional one where agents move on the ring, and the two-dimensional one where
agents move on the periodic square. For each scenario, we considered four different
experimental conditions, that are (𝑖) monomodal regulation, (𝑖𝑖) multimodal regulation,
(𝑖𝑖𝑖) monomodal tracking, and (𝑖𝑣) multimodal tracking. In each condition, we considered
two different numerical set-ups: the continuum one, where the continuified problem is
numerically integrated, so that the hypothesis of infinite agents holds; the discrete one,
where swarms of finite size are considere.

In the continuum framework we are almost always able to fulfill the control problem,
that is, we bring the error to 0 asymptotically. We only observe a degradation of
the performance for tracking trials, where, the numerical diffusion introduced by our
numerical integration scheme plays a more relevant role.

In the discrete framework, we consistently observe performance degradation, in the
form of transient degradation, slower convergence, or a steady-state error (as, for example,
the one depicted in two-dimensional regulation problems – see Fig. 3.5). This is due
to the discretization process discussed in Section 3.4.3, which is indeed needed to cope
with finite size swarms.

3.6 Discussion

We developed a continuification-based control strategy for a swarm of agents moving on
a periodic bounded domain. We started by deriving a macroscopic model of agents’ dis-
tribution and designed a control action able to steer it to a desired configuration, proving
its convergence. The microscopic control strategy was then obtained by spatially sam-
pling the macroscopic control function at the agents’ positions. Numerical simulations
confirmed the effectiveness and robustness of the proposed approach.

The approach does not come without limitations. In particular, convergence towards
desired behaviors has been proved only at the macroscopic scale, that is in the limit
of an infinite number of agents. How the macroscopic convergence maps into the
microscopic dynamics is the subject of ongoing work. Also, a fully distributed and
localized framework needs to be developed to reduce the gap with typical constraints of
real applications.

In the next Chapter we analytically study the robustness properties of the continuifi-
cation control solution that is discussed here. In particular, by using the continuum
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formulation of the problem, we derive stability guarantees when the system is pushed
out of its nominal conditions. In particular, we consider agents being affected by limited
sensing capabilities and the presence of structural perturbations.
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4 Robustness Analysis of Con-
tinuification Control Method-
ologies

In this Chapter we discuss the results of [30, 32]. Specifically, we investigate the stability
and robustness properties of the continuification-based strategy for the control of large-
scale multiagent systems presented in Chapter 3. Within this framework, one transforms
the microscopic, agent-level description of the system dynamics into a macroscopic
continuum-level, for which a control action can be synthesized to steer the macroscopic
dynamics towards a desired distribution. Such an action is ultimately discretized to obtain
a set of deployable control inputs for the agents to achieve the goal. The mathematical
proof of convergence toward the desired distribution typically relies on the assumptions
that no disturbance is present and that each agent possesses global knowledge of all
the others’ positions. Here, we analytically and numerically address the possibility of
relaxing these assumptions for the case of a system of agents moving in periodic domains.
We offer compelling evidence in favor of the use of a continuification-based strategy when
agents only possess a finite sensing capabilities and spatio-temporal perturbations affect
the macroscopic dynamics of the ensemble.
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4.1 Introduction
The key idea of continuification consists of three fundamental steps: (i) finding a macro-
scopic description (typically a partial differential equation, PDE) for the collective dy-
namics of the multiagent system of interest; (ii) designing a macroscopic control action
to attain the desired collective response; (iii) discretize the macroscopic control action to
obtain feasible control inputs for the agents at the microscopic level. See Fig. 2.2 for a
sketch.

This methodology tackles problems in which the control goal is formulated at the
macroscopic dynamics level, but control actions can be exerted only at the microscopic
agent scale [153]. Applications of the approach are related, but not limited to, multi-robot
systems [80, 125, 126, 172], cell populations [45, 46, 173], neuroscience [174, 175], and
human networks [10, 11].

Such an approach was used in [29, 31] to control the distribution of a multiagent sys-
tem swarming in a ring, leading to an effective control scheme for the multiagent system
to achieve a desired distribution. Crucially, to prove convergence of the macroscopic
collective dynamics towards the desired distribution, two key assumptions were made.
Firstly, we assume that agents possess unlimited sensing capabilities so as to know the
positions of all other agents in the swarm. Secondly, we assume that no disturbance or
perturbation is affecting the dynamics.

Here we remove these often unrealistic assumptions and study the performance,
stability, and robustness of the continuification approach in the presence of limited sensing
capabilities or spatio-temporal disturbances. In particular, we prove that semiglobal
asymptotic or bounded convergence can still be achieved under these circumstances. As
we undertake this task, we offer insights into the role of the control parameters in changing
the size and shape of the region of asymptotic stability of the desired distribution.

The rest of the Chapter is organized as follows. We introduce the robustness analysis
we perform in Section 4.2. Such an analysis consists in the consideration of two different
scenarios: limited sensing capabilities, which are discussed in Section 4.3, and pertur-
bations, which are studied in Section 4.4. Each finding is complemented by numerical
simulations on different domains.
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4.2 Robustness analysis

We consider the model and problem statement described in Chapter 3. Specifically,
we consider the dynamics in (3.1), and the density control problem in (3.2). Under
the assumption of Theorem 3.1, we know that, in the limit of infinite agents, global
convergence towards the desired density profile is achieved. In what follows, we relax
the assumptions of agents possessing unlimited sensing and absence of perturbations to
prove semi-global and bounded convergence can still be ensured.

4.3 Limited sensing capabilities

The macroscopic control law in (3.7) is based on the non-local convolution term Ve. For
computing such a control action, agents need to know 𝑒 everywhere in Ω, meaning that
they need to possess sensing capabilities to cover the whole set Ω.

Here, we relax this unrealistic assumption, considering agents only possess a limited
sensing radius Δ, i.e., they can only measure 𝑒 in a neighborhood of radius Δ located
about their positions. We model such a case by considering a modified interaction kernel
defined as

f̂ (z) =


f (z) if ∥z∥2 ≤ Δ

0 otherwise
. (4.1)

In this scenario, the macroscopic control law takes the form

𝑞(x, 𝑡) = 𝐾p𝑒(x, 𝑡) − ∇ ·
[
𝑒(x, 𝑡)Vd (x, 𝑡)

]
− ∇ ·

[
𝜌(x, 𝑡)V̂e (x, 𝑡)

]
, (4.2)

where V̂e = (f̂ ∗𝑒). Under control action (4.2), the error system dynamics may be written
as

𝑒𝑡 (x, 𝑡) = −𝐾p𝑒(x, 𝑡) + ∇ ·
[
𝜌d (x, 𝑡)Ṽ(x, 𝑡)

]
− ∇ ·

[
𝑒(x, 𝑡)Ṽ(x, 𝑡)

]
, (4.3)

where Ṽ = (g ∗ 𝑒) and g = f̂ − f.

Now, we provide some lemmas, that will be used for studying the stability properties
of the perturbed error system (4.3).
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Lemma 4.1. The following inequality holds:

∥∇ · Ṽ∥∞ ≤ ∥𝑒∥2

𝑑∑︁
𝑖=1

∥𝑔𝑖,𝑥𝑖 ∥2,

where 𝑔𝑖,𝑥𝑖 is the derivative of the 𝑖-th component of g with respect to 𝑥𝑖 .

Proof. Expanding ∇ · V̂ into its components (recalling the definition of convolution
derivative in Section 1.6), and using the Minkowsky inequality (see Lemma 1.2), we can
write

∥∇ · Ṽ∥∞ =






 𝑑∑︁
𝑖=1

(𝑔𝑖,𝑥𝑖 ∗ 𝑒)






∞

≤
𝑑∑︁
𝑖=1



(𝑔𝑖,𝑥𝑖 ∗ 𝑒)

∞ , (4.4)

Using Young’s convolution inequality, we construct the bound

∥∇ · Ṽ∥∞ ≤ ∥𝑒∥2

𝑑∑︁
𝑖=1

∥𝑔𝑖,𝑥𝑖 ∥2, (4.5)

proving the lemma. ■

Lemma 4.2. If ∇𝜌d ∈ L2, i.e. ∥𝜌d
𝑥𝑖
∥2 ≤ 𝑀𝑖 , for some constants 𝑀𝑖 and 𝑖 = 1, 2, 3, then

∥𝑒∇𝜌d · V̂∥1 ≤ ∥𝑒∥2
2

𝑑∑︁
𝑖=1

𝑀𝑖 ∥𝑔𝑖 ∥2,

where 𝑔𝑖 is the 𝑖-th component of g.

Proof. By expanding ∇𝜌d · V̂, we get

∥𝑒∇𝜌d · V̂∥1 =






𝑒 𝑑∑︁
𝑖=1

𝜌d
𝑥𝑖
𝑉̃𝑖







1

=






𝑒 𝑑∑︁
𝑖=1

𝜌d
𝑥𝑖
(𝑔𝑖 ∗ 𝑒)







1

. (4.6)

Then, applying Minkowsky (see Lemma 1.2) and the H¥older (see Lemma 1.1) inequali-
ties, we establish




𝑒 𝑑∑︁

𝑖=1
𝜌d
𝑥𝑖
(𝑔𝑖 ∗ 𝑒)







1

≤
𝑑∑︁
𝑖=1



𝑒𝜌d
𝑥𝑖
(𝑔𝑖 ∗ 𝑒)




1 ≤

𝑑∑︁
𝑖=1

∥𝑒∥2∥𝜌d
𝑥𝑖
∥2∥(𝑔𝑖 ∗ 𝑒)∥∞. (4.7)
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Finally, applying the Young’s covolution inequality, we have

𝑑∑︁
𝑖=1

∥𝑒∥2∥𝜌d
𝑥𝑖
∥2∥(𝑔𝑖 ∗ 𝑒)∥∞ ≤

𝑑∑︁
𝑖=1

∥𝑒∥2
2∥𝜌

d
𝑥𝑖
∥2∥𝑔𝑖 ∥2, (4.8)

which, thanks to the L2-boundedness of ∇𝜌d is equivalent to

𝑑∑︁
𝑖=1

∥𝑒∥2
2∥𝜌

d
𝑥𝑖
∥2∥𝑔𝑖 ∥2 ≤ ∥𝑒∥2

2

𝑑∑︁
𝑖=1

𝑀𝑖 ∥𝑔𝑖 ∥2 (4.9)

Comparing (4.6) and (4.9) yields the claim. ■

Theorem 4.1 (Semi-global stability under limited sensing). If 𝜌d and ∇𝜌d ∈ L2, control
strategy (4.2) achieves semiglobal stabilization of error dynamics (4.3), so that, for any
initial condition in the compact set ∥𝑒(·, 0)∥ < 𝛾, choosing 𝐾p sufficiently large ensures
the error to converge asymptotically to 0.

Proof. We choose ∥𝑒∥2
2 as a candidate Lyapunov function. Then, taking into account

(4.3), we write (omitting explicit dependencies for simplicity)

(∥𝑒∥2
2)𝑡 =

∫
Ω

2𝑒𝑒𝑡 dx = −2𝐾p∥𝑒∥2
2 + 2

∫
Ω

𝑒∇ · (𝜌dṼ) dx − 2
∫
Ω

𝑒∇ · (𝑒Ṽ) dx. (4.10)

This relation may be rewritten as

(∥𝑒∥2
2)𝑡 =

∫
Ω

2𝑒𝑒𝑡 dx = −2𝐾p∥𝑒∥2
2 + 2

∫
Ω

𝑒∇ · (𝜌dṼ) dx −
∫
Ω

𝑒2∇ · Ṽ dx, (4.11)

where, applying Lemma 1.7, the divergence theorem, and Lemma 1.8, we establish

2
∫
Ω

𝑒∇ · (𝑒Ṽ) dx = 2
∫
Ω

∇ · (𝑒2Ṽ) dx − 2
∫
Ω

∇𝑒 · (𝑒Ṽ) dx

= 2
∫
𝜕Ω

𝑒2Ṽ · n̂ dx − 2
∫
Ω

∇𝑒 · (𝑒Ṽ) dx = −2
∫
Ω

∇𝑒 · (𝑒Ṽ) dx

= −
∫
Ω

∇(𝑒2) · Ṽ dx = −
∫
Ω

∇ · (𝑒2Ṽ) dx +
∫
Ω

𝑒2∇ · Ṽ dx

= −
∫
𝜕Ω

𝑒2Ṽ · n̂ dx +
∫
Ω

𝑒2∇ · Ṽ dx =

∫
Ω

𝑒2∇ · Ṽ dx. (4.12)

We can provide bounds for the last two terms of (4.11), namely
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Ω

𝑒∇ · (𝜌dṼ) dx
���� ≤ ∫

Ω

��𝑒∇ · (𝜌dṼ)
�� dx

= ∥𝑒∇ · (𝜌dṼ)∥1 = ∥𝑒𝜌d∇ · Ṽ + 𝑒∇𝜌d · Ṽ∥1 ≤

≤ ∥𝑒𝜌d∇ · Ṽ∥1 + ∥𝑒∇𝜌d · Ṽ∥1 ≤ ∥𝑒∥2∥𝜌d∥2∥∇ · Ṽ∥∞

+ ∥𝑒∥2
2

𝑑∑︁
𝑖=1

𝑀𝑖 ∥𝑔𝑖 ∥2 ≤ ∥𝑒∥2
2

(
𝑑∑︁
𝑖=1

𝑙∥𝑔𝑖,𝑥𝑖 ∥2 + 𝑀𝑖 ∥𝑔𝑖 ∥2

)
, (4.13)

����∫
Ω

𝑒2∇ · Ṽ dx
���� ≤ ∫

Ω

��𝑒2∇ · Ṽ
�� dx = ∥𝑒2∇ · Ṽ∥1 ≤ ∥𝑒∥2

2∥∇ · Ṽ∥∞ ≤ ∥𝑒∥3
2

𝑑∑︁
𝑖=1

∥𝑔𝑖,𝑥𝑖 ∥2,

(4.14)

where 𝑙 is a positive constant bounding ∥𝜌d∥2, and we used Lemma 4.1 and 4.2, as well
as the H¥older’s inequality. Ultimately, we establish that

(∥𝑒∥2
2)𝑡 ≤ (−2𝐾p + 𝐹 + 𝐺∥𝑒∥2)∥𝑒∥2

2, (4.15)

where

𝐹 = 2
𝑑∑︁
𝑖=1

𝑙∥𝑔𝑖,𝑥𝑖 ∥2 + 𝑀𝑖 ∥𝑔𝑖 ∥2, (4.16)

𝐺 =

𝑑∑︁
𝑖=1

∥𝑔𝑖,𝑥𝑖 ∥2. (4.17)

Choosing 𝐾p > (𝐹 +𝐺𝛾)/2, the error asymptotically converges to 0, as it ensures 𝛾 is in
the basin of attraction of the origin. ■

Remark 4.1. Theorem 4.1 represents a semi-global stability result [41] (section 12.1).
This means that, if an initial estimate of the error is available, the control parameters
in the control action can be appropriately chosen to ensure convergence of the error
to 0. The greater the initial error, the greater the control effort is needed to ensure
convergence.

Remark 4.2. We remark that (i) as Δ becomes smaller, ∥𝑔∥2 and ∥𝑔𝑖,𝑥𝑖 ∥2 increase,
requiring a larger value of 𝐾p to ensure convergence, and (ii) in the limit of local
dynamics about the origin, where we neglect cubic terms in 𝑒, one can choose 𝐾p = 𝐹/2.

Remark 4.3. In [30], we explicitly study the case 𝑑 = 1, which is included in Theorem
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(a) (b)

Figure 4.1: Limited sensing (𝑑 = 1): steady-state value of (a) the KL divergence, 𝐷∞
KL,

and (b) percentage error, 𝐸̄∞, at the end of a monomodal regulation trial, for different
values ofΔ and 𝐾p (𝐾p = 10 in blue, 𝐾p = 100 in orange and 𝐾p = 1000 in yellow). In the
inset of the left panel, we show the repulsive interaction kernel used in the simulations.

4.1.

Numerical validation (𝑑 = 1) We consider the same framework, control discretization
and numerical set-up as in Section 3.5 of Chapter 3. In particular, we refer to a mono-
modal regulation scenario, where a repulsive swarm of 𝑁 = 100 agents, starting evenly
displaced in S, is required to achieve a desired density profile given by a von Mises
function, with mean 𝜇 = 0 and concentration coefficient 𝑘 = 4 – see (3.25). The pairwise
interactions between agents are modeled via a repulsive kernel, depicted in the inset of
Fig. 4.1a.

We run several trials of duration 𝑡f = 6. In each trial, we consider a different sensing
radius Δ, spanning from 0.1𝜋 to 𝜋. At the end of each trial, we record the steady-state
Kullback-Leibler (KL) divergence , 𝐷∞

KL = 𝐷KL (𝑡f), between 𝜌̂ and 𝜌̂d (equivalent to
𝜌 and 𝜌d, but normalized to sum to 1 – see (3.23) in Section 3.5), and the steady-state
residual percentage error, 𝐸̄∞ = 𝐸̄ (𝑡f) (see (3.22) in Section 3.5). The results of such a
numerical investigation are reported in Fig. 4.1a, for different values of 𝐾p. They show
that: (i) for large values of 𝐾p, performance is independent from the specific sensing
radius that is given to the agents, and (ii) for smaller values of 𝐾p, a limited knowledge of
the domain can still guarantee a performance level that is comparable to the case ofΔ = 𝜋.
For example, when considering 𝐾p = 10, choosing Δ = 0.4𝜋 makes 𝐷∞

KL comparable to
the value obtained for unlimited sensing capabilities. We also report in Fig. 4.2 the final
configuration of the swarm for different values of the sensing radius, when 𝐾p = 10. We
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(a) Δ = 0.1𝜋 (b) Δ = 0.4𝜋

(c) Δ = 0.7𝜋 (d) Δ = 𝜋

Figure 4.2: Steady-state (𝑡 = 𝑡f) comparison between the agents distribution (blue line)
and the desired one (orange line) when the agents are started from the initial distribution
shown as a black line, for increasing sensing abilities of the agents when 𝐾p = 10. Panel
(d) shows the case when sensing is unlimited. In the inset of each panel, we display the
discrete formation of the agents at the end of the trial.

remark that the non-zero 𝐷∞
KL comes from the discretization process, and it approaches

0 in the limit of an infinite number of agents.

Numerical validation (𝑑 = 2) We consider a sample of 100 agents starting from a
constant density profile, and, we run both a discrete and a continuous simulation. This
means we numerically integrate both (3.1) and its continuified version (3.3), allowing us
to understand how well the continuum approximation holds. As a desired density, we
consider the bivariate von Mises distribution in (3.26) with 𝜇 = 𝜈 = 0 and 𝑘1 = 𝑘2 = 1.5

To validate the stability result of Theorem 4.1, we fix 𝐾p = 100. When running a trial
of 200 time steps, we obtain the results in Fig. 4.3a, 4.3b choosing Δ = 0.1𝜋 (i.e., agents
have a sensing radius of 10% of the domain), and those in Fig. 4.3c, 4.3d with Δ = 𝜋

(i.e., unlimited sensing). This choice of 𝐾p ensures the performance is independent
of the sensing capabilities of the agents. In the discrete trials, we observe a non-zero
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(a) (b)

(c) (d)

Figure 4.3: Robustness to limited sensing when 𝑑 = 2 (𝐾p = 100, (a, b) Δ = 0.1𝜋, (c, d)
Δ = 𝜋). (a, c) Final displacement of the system on top of the desired density; (b, d) time
evolution of the percentage error for the discrete (blue) and continuous case (orange).

steady-state error. This is due to the finite-size effect of assuming a swarm of 100 agents.
This residual error is slightly worse in the case of limited sensing.

4.4 Spatio-temporal perturbations of the velocity field

Next, we assess the robustness of the approach to perturbations acting additively on the
macroscopic velocity field and the second on the interaction kernel.

We consider the modified problem

𝜌𝑡 (x, 𝑡) + ∇ · [𝜌(x, 𝑡) (V(x, 𝑡) + W(x, 𝑡))] = 𝑞(x, 𝑡), (4.18)

where W is a perturbing velocity field. Further, we hypothesize (𝑖) W to be periodic on
𝜕Ω, (𝑖𝑖) components of W to be 𝐿∞ bounded by some positive constants 𝑊̄𝑖 (𝑖 = 1, 2, 3),
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Figure 4.4: Phase portrait of system (4.25), bounding ∥𝑒∥2
2 in the presence of spatio-

temporal disturbances.

and (𝑖𝑖𝑖) ∥∇ · W∥∞ ≤ 𝑊 . In such a scenario, the error dynamics become

𝑒𝑡 (x, 𝑡) = −𝐾p𝑒(x, 𝑡) + ∇ · [𝜌d (x, 𝑡)W(x, 𝑡)] − ∇ · [𝑒(x, 𝑡)W(x, 𝑡)] . (4.19)

Theorem 4.2 (Bounded stability with perturbations). In the presence of a bounded
spatio-temporal disturbance W, and if ∥𝜌d∥2 ≤ 𝐿 and ∥𝜌d

𝑥𝑖
∥ ≤ 𝑀𝑖 (𝑖 = 1, . . . , 𝑑), there

exists a threshold value 𝜅 > 0, such that for 𝐾p > 𝜅, the dynamics of ∥𝑒∥2
2 remains

bounded. Specifically,

lim
𝑡→∞

sup ∥𝑒(·, 𝑡)∥2 ≤ 𝐻

2𝐾p −𝑊
, (4.20)

with 𝐻 = 2
(
𝐿𝑊 + ∑𝑑

𝑖=1 𝑀𝑖𝑊̄𝑖

)
.

Proof. We write the dynamics of ∥𝑒∥2
2 as

(∥𝑒∥2
2)𝑡 = 2

∫
Ω

𝑒𝑒𝑡 dx = −2𝐾p∥𝑒∥2
2 + 2

∫
Ω

𝑒∇ · (𝜌dW) dx − 2
∫
Ω

𝑒∇ · (𝑒W) dx. (4.21)

Similarly to the proof of Theorem 4.1 (specifically (4.11) and (4.12)), we can rewrite
(4.21) as

(∥𝑒∥2
2)𝑡 = 2

∫
Ω

𝑒𝑒𝑡 dx = −2𝐾p∥𝑒∥2
2 + 2

∫
Ω

𝑒∇ · (𝜌dW) dx −
∫
Ω

𝑒2∇ · W dx. (4.22)

Similarly to (4.13) and (4.14) in the proof of Theorem 4.1, we can give the bounds����∫
Ω

𝑒∇ · (𝜌dW) dx
���� ≤ ∫

Ω

��𝑒∇ · (𝜌dW)
�� dx = ∥𝑒∇·(𝜌dW)∥1 = ∥𝑒𝜌d∇·W+𝑒∇𝜌d·W∥1 ≤
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(a) (b)

Figure 4.5: Robustness to perturbations (𝑑 = 1, 𝐾p = 10): (a) time evolution of the KL
divergence when a constant disturbance of amplitude 𝑑 switches on at 𝑡 = 3 (in the inset,
a zoom of the second half of the trial is given); (b) time evolution of the percentage error
during the second half of the trial.

≤ ∥𝑒𝜌d∇·W∥1+∥𝑒∇𝜌d·W∥1 ≤ ∥𝑒∥2∥𝜌d∥2∥∇·W∥∞+∥𝑒∥2

𝑑∑︁
𝑖=1

∥𝜌d
𝑥𝑖
∥2∥𝑊𝑖 ∥∞ ≤ 𝐻

2
∥𝑒∥2,

(4.23)

����∫
Ω

𝑒2∇ · W dx
���� ≤ ∫

Ω

��𝑒2∇ · W dx
�� = 

𝑒2∇ · W




1 ≤ ∥𝑒∥2∥𝑒∥2∥∇ · W∥∞ ≤ 𝑊 ∥𝑒∥2

2

(4.24)

Then, setting 𝜂 = ∥𝑒∥2
2, we establish

𝜂𝑡 ≤ −𝐴𝜂 + 𝐻√𝜂, (4.25)

where 𝐻 is given in the theorem statement, and 𝐴 = 2𝐾p −𝑊 . If we assume 𝐴 to be
positive, i.e., 2𝐾p > 𝑊 , the bounding field is exhibiting a global asymptotically stable
equilibrium point at 𝐻2/𝐴2 (see Fig. 4.4 for a sketch of the phase portrait). Then, thanks
to the Lemma 1.5, (4.20) is recovered. Hence, if 𝐾p > 𝜅 > 𝑊/2, ∥𝑒∥2 remains bounded
by 𝐻/𝐴. ■

Remark 4.4. Theorem 4.2 provides a bounded stability result in the presence of exoge-
nous perturbations. By increasing the control gain 𝐾p, and consequently increasing the
control effort, we can make the steady-state error arbitrarily small.
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(a) (b)

Figure 4.6: Robustness to perturbations (𝑑 = 1, 𝐾p = 100): percentage error in time for
(a) a continuous trial, (b) a discrete trial.

Numerical validation (𝑑 = 1) We consider the scenario presented in the previous
section but assuming that a disturbance 𝑊 (𝑥, 𝑡) = 𝑑 step(𝑡 − 𝑡f/2) is acting on the
macroscopic dynamics. Setting 𝐾p = 10 and considering different values of 𝑑, we obtain
the results reported in Fig. 4.5. In particular, results are characterized both in terms of
KL divergence and percentage error, respectively in Fig. 4.5a and 4.5b. As expected,
in the presence of the disturbance, the KL divergence and the percentage error remain
bounded and decreases as the control gain 𝐾p increases. For example, the steady-state
value of the KL divergence decreases from 0.06 when 𝐾p = 10 to less than 0.02 when
𝐾p ≥ 100 (for brevity, the result of this analysis varying 𝐾p is omitted from the Thesis).

Numerical validation (𝑑 = 2) To numerically assess robustness to perturbations when
agents move on the periodic square, we consider a step disturbance of amplitude 𝑑 on
both the 𝑥 and 𝑦 direction coming at half of the trial, that is W(𝑥, 𝑡) = 𝑑 [step(𝑡 −
𝑡f/2), step(𝑡 − 𝑡f/2)]𝑇 . In this case, for a trial of 400 time steps, we observe the results in
Fig. 4.6a for the continuous case and Fig. 4.6b for the discrete one. For both scenarios,
we observe that, when the perturbation is active, the error settles to a bounded value,
confirming findings in Theorem 4.2. We also remark that the error settles well below the
theoretical estimation of Theorem 4.2, for example, when 𝑑 = 3𝜋/2, 𝐻/𝐴 ≈ 0.8, while
∥𝑒(·, 𝑡f)∥2 ≈ 0.1.
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4.5 Discussion
We investigated the stability and robustness properties of a continuification control strat-
egy for a set of agents in periodic domains. We quantified the extent to which the
approach presented in Chapter 3 is robust when affected by (i) limited sensing capabil-
ities of the agents, and (ii) spatio-temporal disturbances. In all cases, we establish the
mathematical proofs of semiglobal asymptotic or bounded convergence – the latter in the
form of a residual steady-state mismatch that can be made arbitrarily small by increasing
the control gain.

In the next Chapter, we introduce a continuum framework for density control problems
in leader-followers scenarios. In particular, the control strategy that is discussed in
Chapter 3 (and whose robustness properties are discussed in this Chapter) suffers from
the limitation that control needs to be applied to all the agents in the group to control. In
what follows, we relax this assumption, assuming some control task needs to be solved
by controlling only a subset of the agents in the group, namely the leaders. In so doing,
we derive necessary and sufficient conditions about the feasibility of the problem, and,
subsequently, we propose two different control strategies ensuring global convergence
properties.
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5 Leader-Follower Density Con-
trol in Large-Scale Multi-Agent
Systems

In this Chapter we present the work in [33]. We address the problem of controlling the
density of a large ensemble of follower agents by acting on a group of leader agents that
interact with them. We formulate the problem as a system of coupled partial integro-
differential equations describing the dynamics of the leaders’ and followers’ densities.
We define feasibility conditions and propose two control architectures for exponential
global stability. The first architecture is a feed-forward scheme for the followers. It
adjusts the leaders’ density via a feedback loop, which leverages information about
leaders and a fixed reference density, to direct followers towards a target distribution.
The second, dual feedback strategy employs a reference-governor to dynamically adapt
the leaders’ reference density based on measurements on both leaders and followers.
Initially analyzed in one dimension, our methods are expanded to multi-dimensional
applications. Numerical validations and an application in continuification-based control
of leader-follower multiagent systems confirm the effectiveness of our approaches.

5.1 Introduction

Orchestrating the collective spatial organization of multi-agent systems is crucial in fields
such as traffic control [109], collective additive manufacturing [110], synthetic biology
[111], swarm robotics [112], and environmental management [113]. Leader-follower
control strategies, where leader agents steer the behavior of a group of follower agents, are
widely applied in these areas and other control applications [10, 11, 114, 115, 116, 117].
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For example, the use of controlled autonomous vehicles has been proposed to improve
traffic flows, avoiding stop-and-go waves and reducing emissions [15, 89]. In swarm
robotics and synthetic biology, leader-follower dynamics can facilitate the management
and regulation of large groups and cellular consortia [118, 119, 120, 121]. A key challenge
is establishing analytical guarantees for achieving desired collective tasks. For instance, in
the shepherding control problem, it is crucial to determine the optimal leader-to-follower
ratios and sensing ranges to effectively manage group dynamics and corral and contain the
followers towards desired regions in the state space [17, 122, 123, 124]. In complex multi-
agent scenarios, microscopic models using ordinary (stochastic) differential equations
are often replaced by macroscopic models using partial integro-differential equations to
simplify analysis and enhance control of spatial organization on a large scale, avoiding
its inherent curse of dimensionality [29, 30, 31, 48, 51, 52, 57, 58, 67, 98, 125, 126, 127].

In this Chapter, we address the challenge of applying macroscopic control techniques
in leader-follower dynamics. Drawing from principles of mixture theory [176] and
building on the state of the art, we represent the spatial interactions between two distinct
populations of agents – leaders and followers – through two one-way coupled partial
integro-differential equations, akin to mass conservation laws for different phases in a
mixture. We synthesize a macroscopic control action to steer the density of the leaders
so as to indirectly control that of the followers. First, we develop a feed-forward control
scheme where the follower dynamics is tamed by making the leaders density converge
towards a predetermined reference. Next, using a reference-governor approach, we
make such a density a function of the actual followers’ density and, hence, develop a
dual-feedback control strategy comprising an inner loop on the leaders’ density and an
outer loop on the followers’. All our findings are corroborated by compelling numerical
examples.

The main contributions of this Chapter are as follows:

• We introduce a simple, yet effective, model for the macroscopic spatial organization
of two interacting populations of leaders and followers.

• We derive analytical conditions that determine the feasibility of solving the prob-
lem, considering factors such as the leaders/followers ratio, noisiness and sensing
radius of the followers, and desired density to be achieved.

• We propose two control schemes that effectively solve the problem, formally
proving that they ensure global exponential stability towards the desired behavior.

• We implement our macroscopic control solution on a population of finite size,
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thereby connecting it with the latest advances in continuification-based control
schemes [26, 29, 30, 31]. This application demonstrates how large-scale control
strategies can be effectively integrated with the detailed dynamics of individual
agents, bridging macroscopic and microscopic methodologies.

The rest of the Chapter is organized as follows. Section 5.2 elaborates on the
continuous leader-follower model. The feasibility of the problem is thoroughly examined
in Section 5.4, which also leads to the development of two distinct control strategies,
detailed in Sections 5.5 and 5.6 within a one-dimensional framework. Sections 5.7 and
5.8 presents the numerical validation of our proposed methodologies in macroscopic and
microscopic scenarios, respectively. Finally, the higher-dimensional extension of the
proposed approach is presented in Section 5.9, demonstrating its adaptability and scope.

5.2 The model

We study a continuous formulation of the leader-follower control problem, where a
population of leader agents (or controllers) is assigned the task of taming the behavior of
a population of follower agents (or targets). In this framework, also adopted differently
in [130], two coupled equations are used to describe the spatio-temporal dynamics of the
densities of the leaders and the followers. For simplicity, differently from [130] we do not
consider interactions taking place between agents of the same population. In particular, a
convection-diffusion equation is used to capture the dynamics of the followers assuming
that they are random walkers at the microscopic level, see e.g. [17, 133]; their interaction
with the leaders being captured by a cross convection term. Conversely, the leaders’
dynamics is described by a mass conservation equation influenced by some control field,
say 𝑢, resulting in

𝜌𝐿𝑡 (𝑥, 𝑡) +
[
𝜌𝐿 (𝑥, 𝑡)𝑢(𝑥, 𝑡)

]
𝑥
= 0, (5.1a)

𝜌𝐹𝑡 (𝑥, 𝑡) +
[
𝜌𝐹 (𝑥, 𝑡)𝑣𝐹𝐿 (𝑥, 𝑡)

]
𝑥
= 𝐷𝜌𝐹𝑥𝑥 (𝑥, 𝑡), (5.1b)

where 𝑥 ∈ S and 𝑡 ∈ R≥0 represent the space and time coordinates, 𝜌𝐿 , 𝜌𝐹 : S ×R≥0 →
R≥0 are the leaders’ and followers’ densities, 𝐷 ∈ R≥0 weights the strength of the
diffusion of the followers, and 𝑢 : S×R≥0 → R is a velocity field to be designed in order
to control the leaders’ dynamics. No diffusion term is present in the leader equation, as
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we assume their microscopic counterpart to be deterministic. Also,

𝑣𝐹𝐿 (𝑥, 𝑡) =
∫
S
𝑓 ({𝑥, 𝑦})𝜌𝐿 (𝑦, 𝑡) d𝑦 = ( 𝑓 ∗ 𝜌𝐿) (𝑥, 𝑡) (5.2)

is a velocity field modeling the influence of the leaders on the dynamics of the followers,
where {𝑥, 𝑦} = (𝑥 − 𝑦 + 𝜋) mod(2𝜋) − 𝜋 is the relative position between 𝑥 and 𝑦 wrapped
on S, and 𝑓 : S → R is a soft-core (that is, returning bounded values when the argument
is 0), odd interaction kernel [53]. To cope with the domain periodicity, we further assume
𝑓 to be periodic. Although the formulation is general, and any choice can be made for
the kernel 𝑓 , we fix it to be repulsive, that is, we choose

𝑓 (𝑥) = 1
e 2𝜋

𝐿 − 1
sgn(𝑥)

[
e

2𝜋−|𝑥 |
𝐿 − e

|𝑥 |
𝐿

]
, (5.3)

where 𝐿 is the characteristic interaction length.

Remark 5.1. Notice that (5.3) is the periodic version of the more standard non-periodic
repulsive kernel 𝑓 (𝑥) = sgn(𝑥)e−

|𝑥 |
𝐿 , which is typically considered in the literature

[53, 64, 122], (see Appendix A). Also, note that our approach can easily be applied to
the case of an attractive kernel by simply changing the sign in (5.3).

By selecting 𝑢 in (5.1a) as a periodic function, such that 𝑢(−𝜋, 𝑡) = 𝑢(𝜋, 𝑡) for all
𝑡 ∈ R≥0, and imposing the periodic boundary condition

𝜌𝐿 (−𝜋, 𝑡) = 𝜌𝐿 (𝜋, 𝑡), ∀𝑡 ∈ R≥0, (5.4)

we ensure conservation of the leaders’ mass 𝑀𝐿 , that is,
(∫

S 𝜌
𝐿 (𝑥, 𝑡) d𝑥

)
𝑡
= 0. Equation

(5.1a) is also complemented with its initial condition, that is

𝜌𝐿 (𝑥, 0) = 𝜌𝐿0 (𝑥), (5.5)

where 𝜌𝐿0 (𝑥) is periodic and such that
∫
S 𝜌

𝐿
0 d𝑥 = 𝑀𝐿 .

As 𝑣𝐹𝐿 in (5.1b) is periodic by construction (as it is defined as a circular convolution),
the periodic boundary condition

𝜌𝐹 (−𝜋, 𝑡) = 𝜌𝐹 (𝜋, 𝑡), ∀ 𝑡 ∈ R≥0 (5.6)

ensures the followers’ mass, 𝑀𝐹 , is conserved, that is
(∫

S 𝜌
𝐹 d𝑥

)
𝑡
= 0 (recalling that

the derivative of a periodic function is periodic itself). Equation (5.1b) is complemented
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with its initial condition, that is

𝜌𝐹 (𝑥, 0) = 𝜌𝐹0 (𝑥), (5.7)

where 𝜌𝐹0 (𝑥) is periodic and such that
∫
S 𝜌

𝐹
0 d𝑥 = 𝑀𝐹 .

Remark 5.2. We consider 𝜌𝐿0 , 𝜌
𝐹
0 ∈ 𝐻2 (S) (notice that, in principle, less regularity can

be considered for 𝜌𝐿0 ). Moreover, we remark that, requiring the periodicity of 𝜌𝑖 , with
𝑖 = 𝐿, 𝐹, ensures that the spatial derivatives of 𝜌𝑖 are periodic as well.

We further assume that the overall mass of leaders and followers is normalized to 1,
that is

𝑀𝐿 + 𝑀𝐹 = 1. (5.8)

Notice that, the mathematical set-up in (5.1) offers a macroscopic continuum descrip-
tion of the so-called shepherding control problem [17, 20]. Within this context, some
controllable leader agents (or herders) are tasked to corral a large set of follower agents
(or targets) into a pre-defined goal region. Many applications can be framed within this
area, such as managing environmental pollutants via robotic systems [113], and search
and rescue operations [177]. Moreover, our choice of stating the problem for periodic
domains, not only simplify derivations, but also well adapts to describe phenomena
that have been traditionally studied within this scope, like traffic and animal behavior
problems [15, 164]. We also remark that our set-up can be easily adapted to deal with
general, non-periodic domains, as done in [31] for a swarm robotics setting.

5.3 Problem statement

We seek to find a spatially periodic control input 𝑢 in (5.1a) such that, starting from 𝜌𝐹0 ,
the leaders will displace so that the followers distribution achieves a desired configuration,
that is,

lim
𝑡→∞

∥ 𝜌̄𝐹 (·) − 𝜌𝐹 (·, 𝑡)∥2 = 0, (5.9)

where 𝜌̄𝐹 : S → R>0 is the desired stationary periodic density profile for the followers.
We note that, by designing 𝑢, we are indirectly controlling the dynamics of the followers’
population by driving the density of the leaders, 𝜌𝐿 , which, in turn, influences the
followers’ population through the interaction kernel 𝑓 .
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(a) (b)

(c)

Figure 5.1: Feasibility plots: minimum amount of leaders’ mass, 𝑀𝐿 for (a) fixed 𝐿 and
varying 𝜅 and 𝐷, (b) fixed 𝐷 and varying 𝜅 and 𝐿, and (c) fixed 𝜅 and varying 𝐷 and
𝐿. In red we show the curve indicating when 𝑀𝐿 becomes greater than 1. 𝑀𝐿 has been
saturated to 1 for visualization purposes.

Remark 5.3. Notice that, in the absence of leaders, (5.1b) describes Brownian motion
of the followers at the macroscopic level. Such a behavior represents an effective evasive
strategy, as shown in [133], within the context of a shepherding problem (see [20] for
further details).

5.4 Feasibility analysis

Definition 5.1. We say that problem (5.1)-(5.9) admits a feasible steady-state solution
(or, equivalently, that it is feasible) if, given a followers’ mass 0 < 𝑀𝐹 < 1, there exists
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a leaders’ density 𝜌̄𝐿 (𝑥), fulfilling the following two conditions:

1. 𝜌̄𝐿 (𝑥) ≥ 0, ∀ 𝑥 ∈ S, (D1.1)

2.
∫
S
𝜌̄𝐿 (𝑥) d𝑥 = 𝑀𝐿 = 1 − 𝑀𝐹 , (D1.2)

and such that the desired followers’ density 𝜌̄𝐹 is a steady-state solution of (5.1b), upon
setting 𝑣𝐹𝐿 (𝑥, 𝑡) = 𝑣̄𝐹𝐿 (𝑥) := ( 𝑓 ∗ 𝜌̄𝐿) (𝑥).

Remark 5.4. Notice that we do not explicitly require 𝜌̄𝐿 to be a solution of (5.1a), as
we can enforce it via an appropriate choice of the control input 𝑢, as it is shown in Sec.
5.5.1.

Hence, for the problem to be feasible, a necessary condition is for 𝜌̄𝐹 to be a steady-
state solution of (5.1b) [

𝜌̄𝐹 (𝑥)𝑣̄𝐹𝐿 (𝑥)
]
𝑥
= 𝐷𝜌̄𝐹𝑥𝑥 (𝑥). (5.10)

By spatial integration, recalling 𝜌̄𝐹 (𝑥) ≠ 0 ∀ 𝑥 ∈ S (see Section 5.3), we can recover the
expression of the velocity field 𝑣̄𝐹𝐿 such that, being the problem set in 𝐻2 (S), (5.10) is
fulfilled almost everywhere,

𝑣̄𝐹𝐿 (𝑥) = 𝐷 𝜌̄
𝐹
𝑥 (𝑥)
𝜌̄𝐹 (𝑥) +

𝐴

𝜌̄𝐹 (𝑥) , (5.11)

where 𝐴 is an arbitrary integration constant. Note that, by reformulating the problem in
C2 (S) and not in 𝐻2 (S), (5.11) would hold point wise.

To find 𝐴, we notice that, as 𝑓 is odd, from Fubini’s theorem for convolutions [178],
we must have∫

S
𝑣̄𝐹𝐿 (𝑥) d𝑥 =

∫
S
( 𝑓 ∗ 𝜌̄𝐿) (𝑥) d𝑥 =

∫
S
𝑓 (𝑥) d𝑥

∫
S
𝜌̄𝐿 (𝑥) d𝑥 = 0. (5.12)

Then, using (5.12), from (5.11) we can derive

𝐴 = −
𝐷

∫
S 𝜌̄

𝐹
𝑥 (𝑥)/𝜌̄𝐹 (𝑥) d𝑥∫

S 1/𝜌̄𝐹 (𝑥) d𝑥
= −

𝐷
[
log( 𝜌̄𝐹 (𝑥))

] 𝜋
−𝜋∫

S 1/𝜌̄𝐹 (𝑥) d𝑥
= 0, (5.13)
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because of the periodicity of 𝜌̄𝐹 . Thus, setting 𝐴 = 0 in (5.11) we find

𝑣̄𝐹𝐿 (𝑥) = 𝐷 𝜌̄
𝐹
𝑥 (𝑥)
𝜌̄𝐹 (𝑥) . (5.14)

Given the expression of 𝑣̄𝐹𝐿 in (5.14), knowing that 𝑣̄𝐹𝐿 = 𝑓 ∗ 𝜌̄𝐿 , and assuming the
expression of the repulsive kernel in (3.24), we can recover the reference leaders’ density
𝜌̄𝐿 by deconvolution [179] (see Appendix B for more details), yielding

𝜌̄𝐿 (𝑥) = 𝑣̄𝐹𝐿𝑥 (𝑥)
2

− 1
2𝐿2

∫
𝑣̄𝐹𝐿 (𝑥) d𝑥 + 𝐵, (5.15)

where 𝐵 is an arbitrary constant. Note that the deconvolution operation does not automat-
ically guarantee that the resulting leaders’ density 𝜌̄𝐿 is feasible according to Definition
5.1. Then, problem (5.1)-(5.9) is feasible if there exists a constant 𝐵 in (5.15) such that
conditions (D1.1) and (D1.2) in Definition 5.1 hold.

Using (5.15), (D1.1), and (D1.2), we can derive a lower bound on the mass of leaders
needed to make the problem feasible as a function of the kernel parameters, the diffusivity
of the followers, and the desired density profile. In what follows, we normalize the desired
followers’ density as

𝜌̄𝐹 (𝑥) = 𝑀𝐹 𝜌̂𝐹 (𝑥), (5.16)

with ∫
S
𝜌̂𝐹 (𝑥) d𝑥 = 1. (5.17)

Theorem 5.1. Problem (5.1)-(5.9) with 𝑓 chosen as in (3.24) is feasible according to
Definition 5.1 if and only if, given 𝜌̂𝐹 as in (5.16), the leaders’ mass 𝑀𝐿 is such that

𝑀𝐿 ≤ 𝑀𝐿 < 1 (5.18)

with
𝑀𝐿 = max

𝑥
{ℎ(𝑥)} ,

where

ℎ(𝑥) = −𝜋𝐷𝑔1 (𝑥) +
𝜋𝐷

𝐿2 𝑔2 (𝑥) −
𝐷𝐶

2𝐿2 , (5.19)
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and

𝑔1 (𝑥) =
[
log( 𝜌̂𝐹 (𝑥))

]
𝑥𝑥

=

(
𝜌̂𝐹𝑥 (𝑥)
𝜌̂𝐹 (𝑥)

)
𝑥

, (5.20)

𝑔2 (𝑥) = log( 𝜌̂𝐹 (𝑥)), (5.21)

𝐶 =

∫
S

log( 𝜌̂𝐹 (𝑥)) d𝑥. (5.22)

Proof. We first prove sufficiency (⇒). Substituting (5.16) into (5.14) we rewrite 𝑣̄𝐹𝐿 as

𝑣̄𝐹𝐿 (𝑥) = 𝐷 𝜌̂
𝐹
𝑥 (𝑥)
𝜌̂𝐹 (𝑥) . (5.23)

Using this expression for 𝑣̄𝐹𝐿 in (5.15), we obtain∫
S
𝜌̄𝐿 (𝑥) d𝑥 = −𝐷 𝐶

2𝐿2 + 2𝜋𝐵, (5.24)

where we used the periodicity of 𝑣̄𝐹𝐿 and choose 𝐶 as in (5.22). Now, to fulfill (D1.2)
in Definition 5.1, we select the arbitrary constant 𝐵 in (5.15) as

𝐵 =
1

2𝜋

(
1 − 𝑀𝐹 + 𝐷 𝐶

2𝐿2

)
. (5.25)

Substituting this expression of 𝐵 into (5.15), and computing 𝑣̄𝐹𝐿𝑥 , from (D1.1) we have

𝜌̄𝐿 (𝑥) = 𝐷

2
𝑔1 (𝑥) −

𝐷

2𝐿2 𝑔2 (𝑥) +
1

2𝜋

(
1 − 𝑀𝐹 + 𝐷 𝐶

2𝐿2

)
≥ 0, (5.26)

with 𝑔1 and 𝑔2 given by (5.20) and (5.21), respectively.

Hence, problem (5.9) admits a feasible solution if (5.26) is fulfilled. From (5.26),
knowing that 𝑀𝐿 = 1 − 𝑀𝐹 , it follows

𝑀𝐿 ≥ −𝜋𝐷𝑔1 (𝑥) +
𝜋𝐷

𝐿2 𝑔2 (𝑥) −
𝐷𝐶

2𝐿2 = ℎ(𝑥), ∀ 𝑥 ∈ S, (5.27)

which is always fulfilled under (5.18), thus proving sufficiency.

To prove necessity (⇐), we assume feasibility, that is, we know there exists some
non-negative 𝜌̄𝐿 summing to 𝑀𝐿 ∈ (0, 1), making 𝜌̄𝐹 a steady-state solution of (5.1b).
Hence, the steps from (5.23) to (5.27) hold by assumption. Being 𝑀𝐿 constant, it must
be 𝑀𝐿 ≥ 𝑀𝐿 for (5.27) to hold. ■
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Remark 5.5. The use of Theorem 5.1 (specifically, condition (5.18)) is twofold. (𝑖) Given
the normalized desired followers’ density to achieve, one can derive a condition on the
minimum amount of leaders’ mass 𝑀𝐿 that makes the problem feasible. (𝑖𝑖) Given the
available mass of leaders, one can identify what desired densities of followers can be
effectively achieved.

Remark 5.6. The whole feasibility analysis can be carried out also assuming some more
complex followers’ density dynamics. Specifically, in Appendix C.1, we give some details
about the case of followers showing followers-followers interactions in the convective
term, that here were omitted from the analysis for simplicity.

5.4.1 An example

Let us assume that the normalized desired followers’ density is the von Mises distribution

𝜌̂𝐹 (𝑥) = e𝜅 cos(𝑥−𝜇)

2𝜋𝐼0 (𝜅)
, (5.28)

where 𝜅 is the concentration coefficient, 𝜇 is the mean and 𝐼0 is the modified Bessel
function of the first kind of order 0. Without any loss of generality, we fix 𝜇 = 0 and use
(5.20), (5.21), (5.22) to compute

𝑔1 (𝑥) = −𝜅 cos(𝑥), (5.29a)

𝑔2 (𝑥) = 𝜅 cos(𝑥) − log[2𝜋𝐼0 (𝜅)], (5.29b)

𝐶 = −2𝜋 log[2𝜋𝐼0 (𝜅)] . (5.29c)

Substituting into (5.19), we obtain

ℎ(𝑥) = 𝜋𝐷
(
1 + 1

𝐿2

)
𝜅 cos(𝑥), (5.30)

whose maximum in S is

𝑀𝐿 = max
𝑥∈S

ℎ(𝑥) = 𝜋𝐷
(
1 + 1

𝐿2

)
𝜅. (5.31)

Therefore, from Theorem 5.1 the problem is feasible if

𝜋𝐷

(
1 + 1

𝐿2

)
𝜅 < 𝑀𝐿 < 1 (5.32)
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v̄FL

Figure 5.2: (a) Feed-forward control scheme. (b) Detail of the leaders’ reference generator
block (where the feasibility analysis is performed).

In Fig. 5.1, we report 𝑀𝐿 as a function of 𝐷, 𝐿 and 𝜅 in three different scenarios.
Specifically, in Fig. 5.1a, we consider 𝐿 = 𝜋 and we let 𝜅 and 𝐷 vary; in Fig. 5.1b,
we fix 𝐷 = 0.05 and we let 𝜅 and 𝐿 vary; in Fig. 5.1c, we fix 𝜅 = 1 and let 𝐷 and 𝐿
vary. From Fig. 5.1 we notice that a larger leaders’ mass is needed for larger values of
𝐷 and 𝜅, and for smaller values of 𝐿. This suggests that highly diffusive followers (large
𝐷) require more leaders for effective control, supporting the use of random walks as an
evasive strategy [133]. Moreover, achieving more concentrated desired density profiles
(large 𝜅) demands a greater mass of leaders. Additionally, as expected, a broader area of
influence (large 𝐿) simplifies the leaders’ task.

For completeness, we also report the resulting expression of the reference leaders’
density as computed from (5.15) with 𝐵 from (5.25), that is,

𝜌̄𝐿 (𝑥) = −𝐷 𝜅
2

(
1 + 1

𝐿2

)
cos(𝑥) + 𝑀

𝐿

2𝜋
. (5.33)

5.5 Feed-forward control

Assuming the problem is feasible according to Definition 5.1, we shall seek to find an
expression for 𝑢 in (5.1a) that drives the leaders’ density from 𝜌𝐿0 towards 𝜌̄𝐿 (computed
from (5.15), fixing 𝐵 as in (5.25)) and, under appropriate conditions, renders 𝜌̄𝐹 an
asymptotically stable solution of (5.1b). The overall control scheme is reported in
Fig. 5.2. We wish to point out that the control solution we propose here does not use
information about the followers’ density 𝜌𝐹 when controlling the leaders, making it a
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feed-forward solution with respect to the followers’ dynamics. To make the solution
more robust, including information about 𝜌𝐹 , we propose a reference-governor scheme
in Section 5.6.

5.5.1 Leaders’ control design

Given a desired density profile, 𝜌̄𝐿 , fulfilling (D1.1) and (D1.2) in Definition 5.1, we
want to choose 𝑢 in (5.1a) so as to drive 𝜌𝐿 to it. We recall that a spatially periodic 𝑢
ensures leaders’ mass conservation (see Section 5.2).

We define the leaders’ density error as

𝑒𝐿 (𝑥, 𝑡) = 𝜌̄𝐿 (𝑥) − 𝜌𝐿 (𝑥, 𝑡). (5.34)

Notice that the following integral condition is fulfilled:∫
S
𝑒𝐿 (𝑥, 𝑡) d𝑥 =

∫
S

(
𝜌̄𝐿 (𝑥) − 𝜌𝐿 (𝑥, 𝑡)

)
d𝑥 = 𝑀𝐿 − 𝑀𝐿 = 0, ∀ 𝑡 ∈ R≥0. (5.35)

Theorem 5.2 (Leaders’ global exponential convergence). Choosing 𝑢 from the spatial
integration of [

𝜌𝐿 (𝑥, 𝑡)𝑢(𝑥, 𝑡)
]
𝑥
= −𝐾𝐿𝑒𝐿 (𝑥, 𝑡), (5.36)

with 𝐾𝐿 > 0, makes the leaders’ error dynamics globally exponentially convergent to
zero.

Proof. From (5.34) and (5.1a), the leaders’ error dynamics obeys

𝑒𝐿𝑡 (𝑥, 𝑡) = −𝜌𝐿𝑡 (𝑥, 𝑡) =
[
𝜌𝐿 (𝑥, 𝑡)𝑢(𝑥, 𝑡)

]
𝑥
, (5.37)

with its initial and periodic boundary condition

𝑒𝐿 (𝑥, 0) = 𝜌̄𝐿 (𝑥) − 𝜌𝐿0 (𝑥) ∀ 𝑥 ∈ S (5.38a)

𝑒𝐿 (−𝜋, 𝑡) = 𝑒𝐿 (𝜋, 𝑡) ∀ 𝑡 ∈ R≥0. (5.38b)

Substituting (5.36) into (5.37) yields

𝑒𝐿𝑡 (𝑥, 𝑡) = −𝐾𝐿𝑒𝐿 (𝑥, 𝑡), (5.39)
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which is a linear globally convergent PDE. Therefore,

𝑒𝐿 (𝑥, 𝑡) = 𝑒𝐿 (𝑥, 0) exp{−𝐾𝐿𝑡}. (5.40)

■

Remark 5.7. The control action is obtained with the same fashion discussed in Chapter
2.2 (here we neglect interactions between the agents of the same population). Moreover,
𝑢 can be derived by a spatial integration of (5.36), that is

𝑢(𝑥, 𝑡) = − 𝐾𝐿

𝜌̄𝐿 (𝑥) − 𝑒𝐿 (𝑥, 𝑡)

∫
𝑒𝐿 (𝑥, 𝑡) d𝑥, (5.41)

where the integration constant was set to 0. Notice that 𝑢 is well defined only if 𝜌𝐿 (𝑥, 𝑡) ≠
0 (recalling 𝜌𝐿 = 𝜌̄𝐿 − 𝑒𝐿), as no control is exertable otherwise.

The periodicity of 𝑢, which is proved next, ensures that leaders’ mass is conserved (∫
S 𝜌

𝐿
𝑡 (𝑥, 𝑡) d𝑥 = 0).

Corollary 5.1. The field 𝑢 obtained by spatially integrating (5.36) is periodic, that is
𝑢(−𝜋, 𝑡) = 𝑢(𝜋, 𝑡) ∀ 𝑡 ∈ R≥0.

Proof. By spatially integrating (5.36) in S, we get∫
S

[
𝜌𝐿 (𝑥, 𝑡)𝑢(𝑥, 𝑡)

]
𝑥

d𝑥 = −
∫
S
𝐾𝐿𝑒

𝐿 (𝑥, 𝑡) d𝑥 = 0, (5.42)

where we used (5.35). Expanding the first member of (5.42) implies

𝜌𝐿 (−𝜋, 𝑡)𝑢(−𝜋, 𝑡) = 𝜌𝐿 (𝜋, 𝑡)𝑢(𝜋, 𝑡). (5.43)

As 𝜌𝐿 (𝜋, 𝑡) = 𝜌𝐿 (−𝜋, 𝑡) from the boundary conditions of (5.1a), the thesis follows. ■

Remark 5.8. Notice that the overall control strategy for the leaders’ density can be easily
adapted to tracking scenarios. Indeed, if 𝜌̃𝐿 (𝑥, 𝑡) is a time varying periodic density
fulfilling some mass conservation principle (that is,

∫
S 𝜌̃

𝐿
𝑡 (𝑥, 𝑡) d𝑥 = 0), choosing[

𝜌𝐿 (𝑥, 𝑡)𝑢(𝑥, 𝑡)
]
𝑥
= −𝜌̃𝐿𝑡 (𝑥, 𝑡) − 𝐾𝐿𝑒𝐿 (𝑥, 𝑡), (5.44)

still allows the error dynamics to be recast as in (5.39) (in this context the error is
𝑒𝐿 = 𝜌̃𝐿 − 𝜌𝐿). Such a choice is also associated with a periodic velocity field 𝑢 (ensuring
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well posedness is preserved) as∫
S

[
−𝜌̃𝐿𝑡 (𝑥, 𝑡) − 𝐾𝐿𝑒𝐿 (𝑥, 𝑡)

]
d𝑥 = 0, ∀ 𝑡 ≥ 0, (5.45)

letting (5.43) and, consequently, Corollary 5.1 still holds.

5.5.2 Followers’ stability analysis

Under the control action discussed in Section 5.5.1, we know leaders’ density exponen-
tially converges to 𝜌̄𝐿 . Here, we prove that, under suitable conditions, global exponential
stability of the followers density towards 𝜌̄𝐹 is also attained.

We define the followers’ error as

𝑒𝐹 (𝑥, 𝑡) = 𝜌̄𝐹 (𝑥) − 𝜌𝐹 (𝑥, 𝑡). (5.46)

Notice that, by construction,
∫
S 𝑒

𝐹 (𝑥, 𝑡) d𝑥 = 0 ∀ 𝑡 ≥ 0. The error dynamics is given by

𝑒𝐹𝑡 (𝑥, 𝑡) =
[(
𝜌̄𝐹 (𝑥) − 𝑒𝐹 (𝑥, 𝑡)

)
𝑣𝐹𝐿 (𝑥, 𝑡)

]
𝑥
+ 𝐷

(
𝑒𝐹𝑥𝑥 (𝑥, 𝑡) − 𝜌̄𝐹𝑥𝑥 (𝑥)

)
, (5.47)

subject to initial and periodic boundary conditions

𝑒𝐹 (𝑥, 0) = 𝜌̄𝐹 (𝑥) − 𝜌𝐹 (𝑥, 0) ∀ 𝑥 ∈ S (5.48a)

𝑒𝐹 (−𝜋, 𝑡) = 𝑒𝐹 (𝜋, 𝑡) ∀ 𝑡 ∈ R≥0. (5.48b)

Theorem 5.3 (Followers’ global exponential stability). In a feasible scenario according
to Theorem 5.1, if

𝐾 𝑓 𝑓 = −2𝐷 + 𝐷∥𝑔1 (·)∥∞ + ∥ℎ1 (·)∥∞ < 0, (5.49)

where

ℎ1 (𝑥) =
[
( 𝑓 ∗ 𝜌𝐿0 ) (𝑥)

]
𝑥
, (5.50)

and 𝑔1 comes from (5.20), the error dynamics (5.47) globally exponentially converges to
0 in L2 (S). If 𝐾𝐿 ≫ |𝐾 𝑓 𝑓 |, the rate of convergence is |𝐾 𝑓 𝑓 |.

Proof. From (5.40), we know that

𝜌𝐿 (𝑥, 𝑡) = 𝜌̄𝐿 (𝑥) +Φ(𝑥, 𝑡), (5.51)
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where

Φ(𝑥, 𝑡) = −
[
𝜌̄𝐿 (𝑥) − 𝜌𝐿 (𝑥, 0)

]
exp(−𝐾𝐿𝑡) (5.52)

represents the transient leaders’ behavior. Recalling that 𝑣𝐹𝐿 = 𝑓 ∗ 𝜌𝐿 , (5.47) can be
rewritten as

𝑒𝐹𝑡 (𝑥, 𝑡) = 𝐷
(
𝑒𝐹𝑥𝑥 (𝑥, 𝑡) − 𝜌̄𝐹𝑥𝑥 (𝑥)

)
+

[(
𝜌̄𝐹 (𝑥) − 𝑒𝐹 (𝑥, 𝑡)

)
( 𝑓 ∗ 𝜌̄𝐿) (𝑥)

]
𝑥

+
[(
𝜌̄𝐹 (𝑥) − 𝑒𝐹 (𝑥, 𝑡)

)
( 𝑓 ∗Φ) (𝑥, 𝑡)

]
𝑥
. (5.53)

By substituting (5.52) into (5.53), and recalling that, upon the fulfillment of the feasibility
condition, 𝑓 ∗ 𝜌̄𝐿 = 𝑣̄𝐹𝐿 , we recover

𝑒𝐹𝑡 (𝑥, 𝑡) = 𝐷𝑒𝐹𝑥𝑥 (𝑥, 𝑡) − 𝐷 [1 − exp(−𝐾𝐿𝑡)]
[
𝑒𝐹 (𝑥, 𝑡) 𝜌̄

𝐹
𝑥 (𝑥)
𝜌̄𝐹 (𝑥)

]
𝑥

+ exp(−𝐾𝐿𝑡)
[
( 𝜌̄𝐹 (𝑥) − 𝑒𝐹 (𝑥, 𝑡)) ( 𝑓 ∗ 𝜌𝐿0 ) (𝑥) − 𝐷𝜌̄

𝐹
𝑥 (𝑥)

]
𝑥
. (5.54)

Choosing ∥𝑒𝐹 ∥2
2 as a Lyapunov functional, and recalling

(
∥𝑒𝐹 ∥2

2
)
𝑡
=

∫
S 𝑒

𝐹𝑒𝐹𝑡 d𝑥, we
obtain(

∥𝑒𝐹 (·, 𝑡)∥2
2

)
𝑡
= 2𝐷

∫
S
𝑒𝐹 (𝑥, 𝑡)𝑒𝐹𝑥𝑥 (𝑥, 𝑡) d𝑥

− 2𝐷 [1 − exp(−𝐾𝐿𝑡)]
∫
S
𝑒𝐹 (𝑥, 𝑡)

[
𝑒𝐹 (𝑥, 𝑡) 𝜌̄

𝐹
𝑥 (𝑥, 𝑡)
𝜌̄𝐹 (𝑥)

]
𝑥

d𝑥

+ 2exp(−𝐾𝐿𝑡)
∫
S
𝑒𝐹 (𝑥, 𝑡)

[
( 𝜌̄𝐹 (𝑥) − 𝑒𝐹 (𝑥, 𝑡)) ( 𝑓 ∗ 𝜌𝐿0 ) (𝑥) − 𝐷𝜌̄

𝐹
𝑥 (𝑥)

]
𝑥

d𝑥, (5.55)

where we used (5.54). Integrating by parts the terms at the right hand-side of (5.55)
(accounting for their periodicity), and recalling that [(𝑒𝐹)2]𝑥 = 2𝑒𝐹𝑒𝐹𝑥 , we can establish
the following identities:

2𝐷
∫
S
𝑒𝐹 (𝑥, 𝑡)𝑒𝐹𝑥𝑥 (𝑥, 𝑡) d𝑥 = −2𝐷

∫
S
(𝑒𝐹𝑥 (𝑥, 𝑡))2 d𝑥 = −2𝐷∥𝑒𝐹𝑥 (·, 𝑡)∥2

2, (5.56a)

− 2𝐷 [1 − exp(−𝐾𝐿𝑡)]
∫
S
𝑒𝐹 (𝑥, 𝑡)

[
𝑒𝐹 (𝑥, 𝑡) 𝜌̄

𝐹
𝑥 (𝑥, 𝑡)
𝜌̄𝐹 (𝑥)

]
𝑥

d𝑥 =
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= 𝐷 [1 − exp(−𝐾𝐿𝑡)]
∫
S

2𝑒𝐹𝑥 (𝑥, 𝑡)𝑒𝐹 (𝑥, 𝑡)
𝜌̄𝐹𝑥 (𝑥, 𝑡)
𝜌̄𝐹 (𝑥) d𝑥 =

= 𝐷 [1 − exp(−𝐾𝐿𝑡)]
∫
S

[
(𝑒𝐹 (𝑥, 𝑡))2]

𝑥

𝜌̄𝐹𝑥 (𝑥, 𝑡)
𝜌̄𝐹 (𝑥) d𝑥 =

= −𝐷 [1 − exp(−𝐾𝐿𝑡)]
∫
S
(𝑒𝐹 (𝑥, 𝑡))2𝑔1 (𝑥) d𝑥, (5.56b)

− 2exp(−𝐾𝐿𝑡)
∫
S
𝑒𝐹 (𝑥, 𝑡)

[
𝑒𝐹 (𝑥, 𝑡) ( 𝑓 ∗ 𝜌𝐿0 ) (𝑥)

]
𝑥

d𝑥 =

= exp(−𝐾𝐿𝑡)
∫
S

2𝑒𝐹 (𝑥, 𝑡)𝑒𝐹𝑥 (𝑥, 𝑡) ( 𝑓 ∗ 𝜌𝐿0 ) (𝑥) d𝑥 =

= exp(−𝐾𝐿𝑡)
∫
S

[
(𝑒𝐹 (𝑥, 𝑡))2]

𝑥
( 𝑓 ∗ 𝜌𝐿0 ) (𝑥) d𝑥 =

= −exp(−𝐾𝐿𝑡)
∫
S
(𝑒𝐹 (𝑥, 𝑡))2ℎ1 (𝑥) d𝑥, (5.56c)

where ℎ1 is defined in (5.50). Accounting for the identities (5.56) into (5.55), yields to(
∥𝑒𝐹 (·, 𝑡)∥2

2

)
𝑡
= −2𝐷∥𝑒𝐹𝑥 (·, 𝑡)∥2

2 − 𝐷 [1 − exp(−𝐾𝐿𝑡)]
∫
S
(𝑒𝐹 (𝑥, 𝑡))2𝑔1 (𝑥) d𝑥

− exp(−𝐾𝐿𝑡)
∫
S
(𝑒𝐹 (𝑥, 𝑡))2ℎ1 (𝑥) d𝑥 + 2exp(−𝐾𝐿𝑡)

∫
S
𝑒𝐹 (𝑥, 𝑡)ℎ2 (𝑥) d𝑥, (5.57)

where we posed ℎ2 = [ 𝜌̄𝐹 ( 𝑓 ∗𝜌𝐿0 )−𝐷𝜌̄
𝐹
𝑥 ]𝑥 . Using the Poincaré-Wirtinger inequality and

the H¥older inequality (see Lemma 1.4 and 1.1), we can establish the following bounds:

−2𝐷∥𝑒𝐹𝑥 (·, 𝑡)∥2 ≤ −2𝐷∥𝑒𝐹 (·, 𝑡)∥2
2, (5.58a)

− 𝐷 [1 − exp(−𝐾𝐿𝑡)]
∫
S
(𝑒𝐹 (𝑥, 𝑡))2𝑔1 (𝑥) d𝑥 ≤

≤ 𝐷 [1 − exp(−𝐾𝐿𝑡)]
����∫

S
(𝑒𝐹 (𝑥, 𝑡))2𝑔1 (𝑥) d𝑥

���� ≤
≤ 𝐷 [1 − exp(−𝐾𝐿𝑡)]

∫
S

��(𝑒𝐹 (𝑥, 𝑡))2𝑔1 (𝑥)
�� d𝑥 =

= 𝐷 [1 − exp(−𝐾𝐿𝑡)] ∥(𝑒𝐹 (·, 𝑡))2𝑔1 (·)∥1 ≤

≤ 𝐷∥𝑔1 (·)∥∞∥𝑒𝐹 (·, 𝑡)∥2
2 (5.58b)
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−exp(−𝐾𝐿𝑡)
∫
S
(𝑒𝐹 (𝑥, 𝑡))2ℎ1 (𝑥) d𝑥 ≤ ∥ℎ1 (·)∥∞∥𝑒𝐹 (·, 𝑡)∥2

2 (5.58c)

2 exp(−𝐾𝐿𝑡)
∫
S
𝑒𝐹 (𝑥, 𝑡)ℎ2 (𝑥) d𝑥 ≤ 2 exp(−𝐾𝐿𝑡)

����∫
S
𝑒𝐹 (𝑥, 𝑡)ℎ2 (𝑥) d𝑥

���� ≤
≤ 2 exp(−𝐾𝐿𝑡)

∫
S

��𝑒𝐹 (𝑥, 𝑡)ℎ2 (𝑥)
�� d𝑥 = 2 exp(−𝐾𝐿𝑡)∥𝑒𝐹 (𝑥, 𝑡)ℎ2 (𝑥)∥1 ≤

≤ 2 exp(−𝐾𝐿𝑡)∥ℎ2 (𝑥)∥2∥𝑒𝐹 (𝑥, 𝑡)∥2. (5.58d)

Note that, the derivation of (5.58c) follows the steps of (5.58b). Moreover, we exploited
the fact that 1 − exp(−𝐾𝐿𝑡) and exp(−𝐾𝐿𝑡) are positive and bounded by 1.

Exploiting the bounds in (5.58) into (5.57), we obtain(
∥𝑒𝐹 (·, 𝑡)∥2

2

)
𝑡
≤ (−2𝐷 + 𝐷∥𝑔1 (·)∥∞ + ∥ℎ1 (·)∥∞)∥𝑒𝐹 (·, 𝑡)∥2

2

+ 2∥ℎ2 (·)∥2exp(−𝐾𝐿𝑡)∥𝑒𝐹 (·, 𝑡)∥2. (5.59)

The bounding system at the right hand-side of (5.59) converges to 0 globally and expo-
nentially due to Lemma 1.6 (fixing 𝜂 = ∥𝑒𝐹 ∥2

2, 𝛾 = −𝐾 𝑓 𝑓 , 𝛿 = 2∥ℎ2∥2 and 𝐾 = 𝐾𝐿).
Moreover its rate of convergence is given by |𝐾 𝑓 𝑓 |. Hence, by comparison lemma (see
Lemma 1.5), the theorem is proved. ■

Remark 5.9. Notice that, for the paradigmatic example where 𝜌𝐿0 = const, ∥ℎ1∥∞ = 0.
Moreover, as the rate of convergence |𝐾 𝑓 𝑓 | is independent from the control parameters,
it can be noticed that the proposed control strategy does not allow for choosing a desired
rate of convergence for the followers.

The control scheme proposed so far does not rely on any information sensed in real-
time about the followers’ displacement, rendering the solution not robust to perturbations,
as detailed by the numerical simulations reported later in Section 5.7.1. This underscores
the necessity for expanding the strategy in order to incorporate some feedback mechanism
on the followers’ dynamics, as discussed in Section 5.6.

Remark 5.10. The proposed control scheme can be adapted to scenarios in which the
feasibility analysis is not fulfilled. In such adaptation, bounded convergence can still be
guaranteed (see Appendix C.2 for more details).
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5.6. Reference-governor control

Leaders’ and 
Followers’ 

mixture <latexit sha1_base64="NN+NmJ5RjrDOLV/M4WldKh9xGUg=">AAAB/nicbVC7TsNAEDzzDOEVoKQ5ESEFCUU24lVG0FBQBIk8pNhE58smOeX80N0aEVmR+ApaqOgQLb9Cwb9gGxeQMNVoZlc7O24ohUbT/DTm5hcWl5YLK8XVtfWNzdLWdlMHkeLQ4IEMVNtlGqTwoYECJbRDBcxzJbTc0WXqt+5BaRH4tzgOwfHYwBd9wRkmkm2rYXB3XXk4pHjQLZXNqpmBzhIrJ2WSo94tfdm9gEce+Mgl07pjmSE6MVMouIRJ0Y40hIyP2AA6CfWZB9qJs8wTuh9phgENQVEhaSbC742YeVqPPTeZ9BgO9bSXiv95nQj7504s/DBC8Hl6CIWE7JDmSiRlAO0JBYgsTQ5U+JQzxRBBCco4T8QoaaeY9GFNfz9LmkdV67R6cnNcrl3kzRTILtkjFWKRM1IjV6ROGoSTkDyRZ/JiPBqvxpvx/jM6Z+Q7O+QPjI9ve0eVWQ==</latexit>

⇢L(x, t)

<latexit sha1_base64="+L4/3jkgIecEP/NAx6kE2npJ0jU=">AAAB/nicbVDLSsNAFJ34rPVVdelmsAgVpCTia1kUxGUF+4Amlsn0th06eTBzI5ZQ8Cvc6sqduPVXXPgvJjELbT2rwzn3cs89biiFRtP8NObmFxaXlgsrxdW19Y3N0tZ2UweR4tDggQxU22UapPChgQIltEMFzHMltNzRZeq37kFpEfi3OA7B8djAF33BGSaSbathcHdVeTikeNAtlc2qmYHOEisnZZKj3i192b2ARx74yCXTumOZIToxUyi4hEnRjjSEjI/YADoJ9ZkH2omzzBO6H2mGAQ1BUSFpJsLvjZh5Wo89N5n0GA71tJeK/3mdCPvnTiz8MELweXoIhYTskOZKJGUA7QkFiCxNDlT4lDPFEEEJyjhPxChpp5j0YU1/P0uaR1XrtHpyc1yuXeTNFMgu2SMVYpEzUiPXpE4ahJOQPJFn8mI8Gq/Gm/H+Mzpn5Ds75A+Mj29xyZVT</latexit>

⇢F (x, t)
<latexit sha1_base64="Nrthta5wEc5OH+LwDe7bVCCfXhU=">AAACA3icbVDLTgJBEJz1ifhg1aOXicQEL2TX+DoSTYxHTOSRAJLeoYEJs4/M9BrJhqNf4VVP3oxXP8SD/+KCHBSsU6WqO11dXqSkIcf5tBYWl5ZXVjNr2fWNza2cvb1TNWGsBVZEqEJd98CgkgFWSJLCeqQRfE9hzRtcjv3aPWojw+CWhhG2fOgFsisFUCq17VzTA500dT8c3V0VHg7bdt4pOhPweeJOSZ5NUW7bX81OKGIfAxIKjGm4TkStBDRJoXCUbcYGIxAD6GEjpQH4aFrJJPiIH8QGKOQRai4Vn4j4eyMB35ih76WTPlDfzHpj8T+vEVP3vJXIIIoJAzE+RFLh5JARWqaNIO9IjUQwTo5cBlyABiLUkoMQqRinFWXTPtzZ7+dJ9ajonhZPbo7zpYtpMxm2x/ZZgbnsjJXYNSuzChMsZk/smb1Yj9ar9Wa9/4wuWNOdXfYH1sc3NNCXaw==</latexit>

⇢̄F (x) Governor

<latexit sha1_base64="Kmsa4OylsVlEiM1ZFCo+Uv1aAyY=">AAAB+3icbVDLSsNAFJ3UV62vqks3g0WoICURX8uiIC4r2Ie0sUymt3XoZBJmbsQS+hVudeVO3PoxLvwXk5qFtp7V4Zx7ueceL5TCoG1/Wrm5+YXFpfxyYWV1bX2juLnVMEGkOdR5IAPd8pgBKRTUUaCEVqiB+Z6Epje8SP3mA2gjAnWDoxBcnw2U6AvOMJFu4e6y/HhAcb9bLNkVewI6S5yMlEiGWrf41ekFPPJBIZfMmLZjh+jGTKPgEsaFTmQgZHzIBtBOqGI+GDeeBB7TvcgwDGgImgpJJyL83oiZb8zI95JJn+G9mfZS8T+vHWH/zI2FCiMExdNDKCRMDhmuRdIE0J7QgMjS5ECFopxphghaUMZ5IkZJNYWkD2f6+1nSOKw4J5Xj66NS9TxrJk92yC4pE4eckiq5IjVSJ5z45Ik8kxdrbL1ab9b7z2jOyna2yR9YH98DiJP1</latexit>

eF (x, t) Leaders' 
controller

<latexit sha1_base64="tj2qAGhIMVUX3Kno1y3L9ssXeXA=">AAAB+3icbVC7TsNAEDyHVwivACXNiQgpSCiyEa8ygoaCIkjkgRITnS+bcMr5bN2tEZGVr6CFig7R8jEU/At2cAEJU41mdrWz44VSGLTtTys3N7+wuJRfLqysrq1vFDe3GiaINIc6D2SgWx4zIIWCOgqU0Ao1MN+T0PSGF6nffABtRKBucBSC67OBEn3BGSbSLdxdlR8PKO53iyW7Yk9AZ4mTkRLJUOsWvzq9gEc+KOSSGdN27BDdmGkUXMK40IkMhIwP2QDaCVXMB+PGk8BjuhcZhgENQVMh6USE3xsx840Z+V4y6TO8N9NeKv7ntSPsn7mxUGGEoHh6CIWEySHDtUiaANoTGhBZmhyoUJQzzRBBC8o4T8QoqaaQ9OFMfz9LGocV56RyfH1Uqp5nzeTJDtklZeKQU1Ill6RG6oQTnzyRZ/Jija1X6816/xnNWdnONvkD6+MbDQaT+w==</latexit>

eL(x, t)

<latexit sha1_base64="qkfNLuaCYcFTuVda+GMdFoRb6vo=">AAAB+XicbVC7TsNAEDzzDOEVoKQ5ESEFCUU24lVG0FAGiTykJIrOl0045Xy27vYQkZWPoIWKDtHyNRT8C7ZxAQlTjWZ2tbPjR1IYdN1PZ2FxaXlltbBWXN/Y3Nou7ew2TWg1hwYPZajbPjMghYIGCpTQjjSwwJfQ8sfXqd96AG1EqO5wEkEvYCMlhoIzTKSWrTweUzzql8pu1c1A54mXkzLJUe+XvrqDkNsAFHLJjOl4boS9mGkUXMK02LUGIsbHbASdhCoWgOnFWdwpPbSGYUgj0FRImonweyNmgTGTwE8mA4b3ZtZLxf+8jsXhZS8WKrIIiqeHUEjIDhmuRdID0IHQgMjS5ECFopxphghaUMZ5ItqkmGLShzf7/TxpnlS98+rZ7Wm5dpU3UyD75IBUiEcuSI3ckDppEE7G5Ik8kxcndl6dN+f9Z3TByXf2yB84H9/OJpNN</latexit>

u(x, t)

(a)
<latexit sha1_base64="6OMNHcL9l7Ys0T4ktanzRALYMJw=">AAAB/nicbVC7TsNAEDyHVwivACXNiQiJKrIRrzKChoIiSOQhxSFaXzbJKeeH7tZIkRWJr6CFig7R8isU/AuOcQGBqUYzu9rZ8SIlDdn2h1VYWFxaXimultbWNza3yts7TRPGWmBDhCrUbQ8MKhlggyQpbEcawfcUtrzx5cxv3aM2MgxuaRJh14dhIAdSAKWS646AElePwundda9csat2Bv6XODmpsBz1XvnT7Yci9jEgocCYjmNH1E1AkxQKpyU3NhiBGMMQOykNwEfTTbLMU34QG6CQR6i5VDwT8edGAr4xE99LJ32gkZn3ZuJ/XiemwXk3kUEUEwZidoikwuyQEVqmZSDvS41EMEuOXAZcgAYi1JKDEKkYp+2U0j6c+e//kuZR1TmtntwcV2oXeTNFtsf22SFz2BmrsStWZw0mWMQe2RN7th6sF+vVevseLVj5zi77Bev9CxoslmE=</latexit>

⇢̂L

(b)

Velocity 
feedback 

computation
Deconvolution

<latexit sha1_base64="Kmsa4OylsVlEiM1ZFCo+Uv1aAyY=">AAAB+3icbVDLSsNAFJ3UV62vqks3g0WoICURX8uiIC4r2Ie0sUymt3XoZBJmbsQS+hVudeVO3PoxLvwXk5qFtp7V4Zx7ueceL5TCoG1/Wrm5+YXFpfxyYWV1bX2juLnVMEGkOdR5IAPd8pgBKRTUUaCEVqiB+Z6Epje8SP3mA2gjAnWDoxBcnw2U6AvOMJFu4e6y/HhAcb9bLNkVewI6S5yMlEiGWrf41ekFPPJBIZfMmLZjh+jGTKPgEsaFTmQgZHzIBtBOqGI+GDeeBB7TvcgwDGgImgpJJyL83oiZb8zI95JJn+G9mfZS8T+vHWH/zI2FCiMExdNDKCRMDhmuRdIE0J7QgMjS5ECFopxphghaUMZ5IkZJNYWkD2f6+1nSOKw4J5Xj66NS9TxrJk92yC4pE4eckiq5IjVSJ5z45Ik8kxdrbL1ab9b7z2jOyna2yR9YH98DiJP1</latexit>

eF (x, t)

Governor
<latexit sha1_base64="Nrthta5wEc5OH+LwDe7bVCCfXhU=">AAACA3icbVDLTgJBEJz1ifhg1aOXicQEL2TX+DoSTYxHTOSRAJLeoYEJs4/M9BrJhqNf4VVP3oxXP8SD/+KCHBSsU6WqO11dXqSkIcf5tBYWl5ZXVjNr2fWNza2cvb1TNWGsBVZEqEJd98CgkgFWSJLCeqQRfE9hzRtcjv3aPWojw+CWhhG2fOgFsisFUCq17VzTA500dT8c3V0VHg7bdt4pOhPweeJOSZ5NUW7bX81OKGIfAxIKjGm4TkStBDRJoXCUbcYGIxAD6GEjpQH4aFrJJPiIH8QGKOQRai4Vn4j4eyMB35ih76WTPlDfzHpj8T+vEVP3vJXIIIoJAzE+RFLh5JARWqaNIO9IjUQwTo5cBlyABiLUkoMQqRinFWXTPtzZ7+dJ9ajonhZPbo7zpYtpMxm2x/ZZgbnsjJXYNSuzChMsZk/smb1Yj9ar9Wa9/4wuWNOdXfYH1sc3NNCXaw==</latexit>

⇢̄F (x)

<latexit sha1_base64="6OMNHcL9l7Ys0T4ktanzRALYMJw=">AAAB/nicbVC7TsNAEDyHVwivACXNiQiJKrIRrzKChoIiSOQhxSFaXzbJKeeH7tZIkRWJr6CFig7R8isU/AuOcQGBqUYzu9rZ8SIlDdn2h1VYWFxaXimultbWNza3yts7TRPGWmBDhCrUbQ8MKhlggyQpbEcawfcUtrzx5cxv3aM2MgxuaRJh14dhIAdSAKWS646AElePwundda9csat2Bv6XODmpsBz1XvnT7Yci9jEgocCYjmNH1E1AkxQKpyU3NhiBGMMQOykNwEfTTbLMU34QG6CQR6i5VDwT8edGAr4xE99LJ32gkZn3ZuJ/XiemwXk3kUEUEwZidoikwuyQEVqmZSDvS41EMEuOXAZcgAYi1JKDEKkYp+2U0j6c+e//kuZR1TmtntwcV2oXeTNFtsf22SFz2BmrsStWZw0mWMQe2RN7th6sF+vVevseLVj5zi77Bev9CxoslmE=</latexit>

⇢̂L

Leaders’ reference 
generator

<latexit sha1_base64="+VzCqcsNlWP/7enMCWEkrKteGJQ=">AAAB/nicbVC7TsNAEDyHVwivACXNiQiJKrIRrzKChoIiSOQhxSFaXzbJKeeH7tZIkRWJr6CFig7R8isU/AuOcQGBqUYzu9rZ8SIlDdn2h1VYWFxaXimultbWNza3yts7TRPGWmBDhCrUbQ8MKhlggyQpbEcawfcUtrzx5cxv3aM2MgxuaRJh14dhIAdSAKWS63qgE1ePwundda9csat2Bv6XODmpsBz1XvnT7Yci9jEgocCYjmNH1E1AkxQKpyU3NhiBGMMQOykNwEfTTbLMU34QG6CQR6i5VDwT8edGAr4xE99LJ32gkZn3ZuJ/XiemwXk3kUEUEwZidoikwuyQEVqmZSDvS41EMEuOXAZcgAYi1JKDEKkYp+2U0j6c+e//kuZR1TmtntwcV2oXeTNFtsf22SFz2BmrsStWZw0mWMQe2RN7th6sF+vVevseLVj5zi77Bev9Cw1ollk=</latexit>

⇢̄L

Choice of
<latexit sha1_base64="I2JI3O68Y5sk8rClWNcxScH/hn4=">AAAB83icbVC7TsNAEDzzDOEVoKQ5ESFRRTbiVUbQUCYSeUiJFZ0vm3DK+Wzd7YEiK19ACxUdouWDKPgXbOMCEqYazexqZyeIpTDoup/O0vLK6tp6aaO8ubW9s1vZ22+byGoOLR7JSHcDZkAKBS0UKKEba2BhIKETTG4yv/MA2ohI3eE0Bj9kYyVGgjNMpebjoFJ1a24Ouki8glRJgcag8tUfRtyGoJBLZkzPc2P0E6ZRcAmzct8aiBmfsDH0UqpYCMZP8qAzemwNw4jGoKmQNBfh90bCQmOmYZBOhgzvzbyXif95PYujKz8RKrYIimeHUEjIDxmuRdoA0KHQgMiy5ECFopxphghaUMZ5Ktq0knLahzf//SJpn9a8i9p586xavy6aKZFDckROiEcuSZ3ckgZpEU6APJFn8uJY59V5c95/RpecYueA/IHz8Q2IOpGK</latexit>w

<latexit sha1_base64="Aqz6ds4sFMtCOuJ9qBvdqLG02Gk=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIRrzKChjKRyENKrOh82YRTzmfrbg8psvIFtFDRIVo+iIJ/wTYuIGGq0cyudnaCWAqDrvvplFZW19Y3ypuVre2d3b3q/kHHRFZzaPNIRroXMANSKGijQAm9WAMLAwndYHqb+d1H0EZE6h5nMfghmygxFpxhKrW6w2rNrbs56DLxClIjBZrD6tdgFHEbgkIumTF9z43RT5hGwSXMKwNrIGZ8yibQT6liIRg/yYPO6Yk1DCMag6ZC0lyE3xsJC42ZhUE6GTJ8MIteJv7n9S2Or/1EqNgiKJ4dQiEhP2S4FmkDQEdCAyLLkgMVinKmGSJoQRnnqWjTSippH97i98ukc1b3LusXrfNa46ZopkyOyDE5JR65Ig1yR5qkTTgB8kSeyYtjnVfnzXn/GS05xc4h+QPn4xtWWpFq</latexit>

W
<latexit sha1_base64="0PVC3bh1fcgR9kmBPegy/CRUoZA=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESFRRTbiVUbQUAaJPKTEitaXTXLK+aG7NVJk8hO0UNEhWn6Ggn/BNi4gYarRzK52drxISUO2/WktLa+srq2XNsqbW9s7u5W9/ZYJYy2wKUIV6o4HBpUMsEmSFHYijeB7Ctve5Cbz2w+ojQyDe5pG6PowCuRQCqBU6vRARWPg7X6latfsHHyROAWpsgKNfuWrNwhF7GNAQoExXceOyE1AkxQKZ+VebDACMYERdlMagI/GTfK8M34cG6CQR6i5VDwX8fdGAr4xU99LJ32gsZn3MvE/rxvT8MpNZBDFhIHIDpFUmB8yQsu0COQDqZEIsuTIZcAFaCBCLTkIkYpx2kw57cOZ/36RtE5rzkXt/O6sWr8umimxQ3bETpjDLlmd3bIGazLBFHtiz+zFerRerTfr/Wd0ySp2DtgfWB/fTLaUMg==</latexit>

↵W
<latexit sha1_base64="KO0Z1Rw2Wo/s/A+SaeJLAmYuL0A=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIRrzKChjJI5CElVrS+bJJTzg/drZEiKx9BCxUdouVrKPgXbOMCEqYazexqZ8eLlDRk259WaWV1bX2jvFnZ2t7Z3avuH7RNGGuBLRGqUHc9MKhkgC2SpLAbaQTfU9jxpreZ33lEbWQYPNAsQteHcSBHUgClUqcPKpoAH1Rrdt3OwZeJU5AaK9AcVL/6w1DEPgYkFBjTc+yI3AQ0SaFwXunHBiMQUxhjL6UB+GjcJI875yexAQp5hJpLxXMRf28k4Bsz87100geamEUvE//zejGNrt1EBlFMGIjsEEmF+SEjtEx7QD6UGokgS45cBlyABiLUkoMQqRinxVTSPpzF75dJ+6zuXNYv7s9rjZuimTI7YsfslDnsijXYHWuyFhNsyp7YM3uxEuvVerPef0ZLVrFzyP7A+vgGnZGT0Q==</latexit>↵
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Figure 5.3: (a) Reference-governor control scheme. (b) Detail of the governor block.

5.6 Reference-governor control

The control strategy introduced in Section 5.5 does not include any feedback on the
followers’ density. To address the objective outlined in (5.9) and incorporate feedback
related to the followers’ density, we introduce a reference-governor approach, inspired
by [180]. This method employs a dual-feedback loop structure: the outer loop, or
the governor loop, dynamically adjusts the target density for the leaders, 𝜌̂𝐿 , aiming
to minimize the error 𝑒𝐹 = 𝜌̄𝐹 − 𝜌𝐹 by facilitating the required organization of the
followers. The inner loop, or the leaders’ control loop, then calculates the control input
𝑢 as per (5.1a), to guide the actual leaders’ density, 𝜌𝐿 , towards 𝜌̂𝐿 , thereby reducing the
discrepancy 𝑒𝐿 = 𝜌̂𝐿 − 𝜌𝐿 to zero and fulfilling the control objectives. An illustration
of this strategy is depicted in Fig. 5.3. Note that for controlling the leaders’ density we
leverage the framework previously detailed in Section 5.5.1 (see Remark 5.8 specifically).

5.6.1 Governor design

Here, we discuss the design of the governor and explore its stability properties. Because
of Theorem 5.2, and in particular Remark 5.8, we know that, given some leaders’ desired
time-varying density , choosing 𝑢 in (5.1a) as (5.44), it is

𝜌𝐿 (𝑥, 𝑡) = 𝜌̂𝐿 (𝑥, 𝑡) +Φ(𝑥, 𝑡), (5.60)
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where Φ represents the leaders’ transient behavior, that is

Φ(𝑥, 𝑡) = −
[
𝜌̂𝐿 (𝑥, 0) + 𝜌𝐿0 (𝑥)

]
exp(−𝐾𝐿𝑡). (5.61)

Hence, recalling (5.2), and because of the linearity of the convolution operator, 𝑣𝐹𝐿 in
(5.1b) can be decomposed as

𝑣𝐹𝐿 (𝑥, 𝑡) = 𝑣̂𝐹𝐿 (𝑥, 𝑡) + ( 𝑓 ∗Φ) (𝑥, 𝑡), (5.62)

where 𝑣̂𝐹𝐿 = 𝑓 ∗ 𝜌̂. In what follows, we recover an expression for 𝑣̂𝐹𝐿 that, by means
of Lyapunov arguments, can be proved to ensure the convergence of the followers’ error
to 0. After that, we show how to deconvolve such a velocity field to obtain 𝜌̂𝐿 , for the
leaders to track. Specifically, we choose 𝑣̂𝐹𝐿 to incorporate the feed-forward action that
was discussed in Section 5.5, and a feedback correction whose weight can be chosen
online to ensure physical constraints are met. In particular,

𝑣̂𝐹𝐿 (𝑥, 𝑡) = ( 𝑓 ∗ 𝜌̂𝐿) (𝑥, 𝑡) = 𝑣̄𝐹𝐿 (𝑥) + 𝛼(𝑡) 𝑤(𝑥, 𝑡) (5.63)

where 𝑣̄𝐹𝐿 is the feed-forward term chosen as in (5.14), 𝛼 : R≥0 → [0, 1] is a control
function to be appropriately selected, and

𝑤(𝑥, 𝑡) = 𝐷𝜌̄𝐹𝑥 (𝑥)𝑒𝐹 (𝑥, 𝑡)
𝜌̄𝐹 (𝑥)

(
𝜌̄𝐹 (𝑥) − 𝑒𝐹 (𝑥, 𝑡)

) . (5.64)

is a feedback correction term modulated by 𝛼(𝑡).

Remark 5.11. Equation (5.64) is well defined only if 𝜌𝐹 > 0, as 𝜌̄𝐹 ∈ R>0 (see Section
5.3). This condition is reasonable whereby: (i) there is no need to exert a control action
where the followers’ density is null, and (ii) in practical scenarios, 𝜌𝐹 is estimated from
the positions of a discrete set of agents using, for instance, a Gaussian kernel estimator
[168], which ensures this assumption is always met.

Theorem 5.4 (Followers’ global exponential stability). In a feasible scenario according
to Theorem 5.1, the followers’ density (whose dynamics is described in (5.1b), with 𝑣𝐹𝐿

given in (5.62) and 𝑣̂𝐹𝐿 coming from (5.63)), globally exponentially converges to the
desired density 𝜌̄𝐹 in L2 (S), for any choice of 𝛼(𝑡) ∈ [0, 1], if

𝐾𝑟𝑔 = −2𝐷 + 𝐷∥𝑔1 (·)∥∞ + ∥ℎ1∥∞ < 0. (5.65)
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If 𝐾𝐿 ≫ |𝐾𝑟𝑔 |, the rate of convergence is bounded by 𝐾𝑟𝑔.

Proof. The followers’ error dynamics obeys to (5.47) with initial and periodic boundary
conditions set as in (5.48). Substituting (5.62) into (5.47) yields

𝑒𝐹𝑡 (𝑥, 𝑡) = 𝐷
(
𝑒𝐹𝑥𝑥 (𝑥, 𝑡) − 𝜌̄𝐹𝑥𝑥 (𝑥)

)
+

[(
𝜌̄𝐹 (𝑥) − 𝑒𝐹 (𝑥, 𝑡)

)
𝑣̂𝐹𝐿 (𝑥, 𝑡)

]
𝑥

+
[(
𝜌̄𝐹 (𝑥) − 𝑒𝐹 (𝑥, 𝑡)

)
( 𝑓 ∗Φ) (𝑥, 𝑡)

]
𝑥
. (5.66)

Substituting (5.63) (with 𝑤 coming from (5.64)), we obtain

𝑒𝐹𝑡 (𝑥, 𝑡) = 𝐷𝑒𝐹𝑥𝑥 (𝑥, 𝑡) − 𝐷 [1 − exp(−𝐾𝐿𝑡)]
[
𝑒𝐹 (𝑥, 𝑡) 𝜌̄

𝐹
𝑥 (𝑥)
𝜌̄𝐹 (𝑥)

]
𝑥

+𝐷𝛼(𝑡)
[
𝑒𝐹 (𝑥, 𝑡) 𝜌̄

𝐹
𝑥 (𝑥)
𝜌̄𝐹 (𝑥)

]
𝑥

+exp(−𝐾𝐿𝑡)
[
( 𝜌̄𝐹 (𝑥) − 𝑒𝐹 (𝑥, 𝑡)) ( 𝑓 ∗ 𝜌𝐿0 ) (𝑥) − 𝐷𝜌̄

𝐹
𝑥 (𝑥)

]
𝑥
.

(5.67)

Similarly to Theorem 5.3, we introduce the Lyapunov functional ∥𝑒𝐹 ∥2
2, and we derive

(
∥𝑒𝐹 (·, 𝑡)∥2

2

)
𝑡
= 2𝐷

∫
S
𝑒𝐹 (𝑥, 𝑡)𝑒𝐹𝑥𝑥 (𝑥, 𝑡) d𝑥

− 2𝐷 [1 − exp(−𝐾𝐿𝑡)]
∫
S
𝑒𝐹 (𝑥, 𝑡)

[
𝑒𝐹 (𝑥, 𝑡) 𝜌̄

𝐹
𝑥 (𝑥, 𝑡)
𝜌̄𝐹 (𝑥)

]
𝑥

d𝑥

+ 2𝐷𝛼(𝑡)
∫
S
𝑒𝐹 (𝑥, 𝑡)

[
𝑒𝐹 (𝑥, 𝑡) 𝜌̄

𝐹
𝑥 (𝑥, 𝑡)
𝜌̄𝐹 (𝑥)

]
𝑥

d𝑥

+ 2exp(−𝐾𝐿𝑡)
∫
S
𝑒𝐹 (𝑥, 𝑡)

[
( 𝜌̄𝐹 (𝑥) − 𝑒𝐹 (𝑥, 𝑡)) ( 𝑓 ∗ 𝜌𝐿0 ) (𝑥) − 𝐷𝜌̄

𝐹
𝑥 (𝑥)

]
𝑥

d𝑥. (5.68)

By means of integration by parts and recalling [(𝑒𝐹)2]𝑥 = 2𝑒𝐹𝑒𝐹𝑥 , we can establish the
identity

2𝐷𝛼(𝑡)
∫
S
𝑒𝐹 (𝑥, 𝑡)

[
𝑒𝐹 (𝑥, 𝑡) 𝜌̄

𝐹
𝑥 (𝑥, 𝑡)
𝜌̄𝐹 (𝑥)

]
𝑥

d𝑥 = −𝐷𝛼(𝑡)
∫
S

2𝑒𝐹 (𝑥, 𝑡)𝑒𝐹𝑥 (𝑥, 𝑡)
𝜌̄𝐹𝑥 (𝑥, 𝑡)
𝜌̄𝐹 (𝑥) d𝑥 =

= −𝐷𝛼(𝑡)
∫
S

[
(𝑒𝐹 (𝑥, 𝑡))2]

𝑥

𝜌̄𝐹𝑥 (𝑥, 𝑡)
𝜌̄𝐹 (𝑥) d𝑥 = 𝐷𝛼(𝑡)

∫
S
(𝑒𝐹 (𝑥, 𝑡))2𝑔1 (𝑥) d𝑥. (5.69)

Using this identity along with those in (5.56), we obtain(
∥𝑒𝐹 (·, 𝑡)∥2

2

)
𝑡
= −2𝐷∥𝑒𝐹𝑥 (·, 𝑡)∥2

2 −𝐷 [1 − exp(−𝐾𝐿𝑡) − 𝛼(𝑡)]
∫
S
(𝑒𝐹 (𝑥, 𝑡))2𝑔1 (𝑥) d𝑥
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− exp(−𝐾𝐿𝑡)
∫
S
(𝑒𝐹 (𝑥, 𝑡))2ℎ1 (𝑥) d𝑥 + 2exp(−𝐾𝐿𝑡)

∫
S
𝑒𝐹 (𝑥, 𝑡)ℎ2 (𝑥) d𝑥. (5.70)

With the same vein of (5.58b), we can establish the bound

−𝐷 [1 − exp(−𝐾𝐿𝑡) − 𝛼(𝑡)]
∫
S
(𝑒𝐹 (𝑥, 𝑡))2𝑔1 (𝑥) d𝑥 ≤ 𝐷∥𝑔1 (·)∥∞∥𝑒𝐹 (·, 𝑡)∥2

2, (5.71)

where we used the H¥older inequality and we noted that, for any choice of 𝛼(𝑡) ∈ [0, 1],
|1 − exp(−𝐾𝐿𝑡) − 𝛼(𝑡) | < 1, ∀𝑡 Combining bound (5.71) with the bounds in (5.58), we
can establish that(

∥𝑒𝐹 (·, 𝑡)∥2
2

)
𝑡
≤ (−2𝐷 + 𝐷∥𝑔1 (·)∥∞ + ∥ℎ1 (·)∥∞)∥𝑒𝐹 (·, 𝑡)∥2

2

+ 2∥ℎ2 (·)∥2exp(−𝐾𝐿𝑡)∥𝑒𝐹 (·, 𝑡)∥2. (5.72)

Then, as in Th. 5.3, using Lemma 1.6, the claim is proved. ■

Remark 5.12. The case 𝛼 = 0 coincides with the control technique studied in Section
5.5. The case 𝛼 = 1, when 𝑡 → ∞, puts the error system into the form of a heat equation
with periodic boundary conditions.

Remark 5.13. As 𝛼 is ultimately chosen to ensure that the deconvolution of 𝑣𝐹𝐿 is
physically meaningful in the sense of the constraints in Definition 5.1 (as detailed in the
rest of this section), it cannot be used to improve the convergence condition in Theorem
5.4.

Given (5.62) and (5.63), and recalling that 𝑣̂𝐹𝐿 = 𝑓 ∗ 𝜌̂𝐿 , we recover the desired
leaders’ density 𝜌̂𝐿 by online deconvolution [179] of 𝑣𝐹𝐿 with the repulsive interac-
tion kernel given by (5.3) (see Appendix B for more details). For the linearity of the
convolution we can deconvolve the two terms of (5.63) separately, leading to

𝜌̂𝐿 (𝑥, 𝑡) = 𝜌̄𝐿 (𝑥) + 𝛼(𝑡)𝑊 (𝑥, 𝑡), (5.73)

where 𝜌̄𝐿 is the deconvolution of 𝑣̄𝐹𝐿 and𝑊 is the deconvolution of 𝑤, that is,

𝑊 (𝑥, 𝑡) = 𝑤𝑥 (𝑥, 𝑡)
2

− 1
2𝐿2

∫
𝑤(𝑥, 𝑡) d𝑥 + 𝛽(𝑡), (5.74)

with 𝛽 being an arbitrary function of time (see Appendix B for more details). Being
the problem feasible, we know that 𝜌̄𝐿 is positive and sums to 𝑀𝐿 . Then, for 𝜌̂𝐿 to
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be physically meaningful, that is, positive and summing to 𝑀𝐿 , 𝑊 needs to fulfill the
following conditions: ∫

S
𝑊 (𝑥, 𝑡) d𝑥 = 0, ∀𝑡 ≥ 0, (5.75a)

𝜌̄𝐿 (𝑥) + 𝛼(𝑡)𝑊 (𝑥, 𝑡) ≥ 0, ∀𝑡 ≥ 0, 𝑥 ∈ S. (5.75b)

Condition (5.75a) can always be ensured by appropriately choosing 𝛽 in (5.74) and
(5.75b) can be satisfied by selecting 𝛼 so that it remains fulfilled, as will be shown next.

Choice of 𝛼(𝑡)

A possible conservative choice is to set

𝛼(𝑡) =
[
−min𝑥 𝜌̄𝐿 (𝑥)
min𝑥𝑊 (𝑥, 𝑡)

]1

0
, (5.76)

where subscripts and superscripts of square brackets indicate a saturation. With this
choice of 𝛼(𝑡), we can guarantee that

min
𝑥
𝜌̄𝐿 (𝑥) + 𝛼(𝑡) min

𝑥
𝑊 (𝑥, 𝑡) ≥ 0, (5.77)

and therefore that (5.75b) is fulfilled. Note that in making the choice we exploited the
fact that min𝑥𝑊 ≤ 0 by construction, since 𝛽 is chosen in (5.74) to ensure (5.75a). Also,
notice that (5.77) (and consequently (5.75b)) remains satisfied when 𝛼 is saturated to zero
as 𝜌̄𝐿 ≥ 0 by assumption, and when 𝛼 is saturated to unity as −min𝑥 𝜌̄𝐿/min𝑥𝑊 > 1
implies | min𝑥 𝜌̄𝐿 | > | min𝑥𝑊 |.

Other possible choices of 𝛼, including optimal ones, are possible. A practical
heuristic choice to approximate the optimal 𝛼 and enhance robustness of the algorithm
to persistent disturbances is adopted later in Section 5.7.1. A further investigation of
the choice of how 𝛼 could be optimized is beyond the scope of this paper and will be
explored in future work.

Remark 5.14. The reference-governor control scheme cannot be adapted to scenarios in
which the feasibility analysis is not fulfilled as for the feed-forward scheme (see Appendix
C.2 for more details).
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(a) (b)

(c)

Figure 5.4: Monomodal trial: (a) initial and final densities; (b) time evolution of the
percentage error and KL divergences using the feed-forward control scheme; and (c) time
evolution of the percentage error, KL divergences, and 𝛼 using the reference-governor
scheme.

5.7 Numerical validation

In this section, we perform a numerical validation of the two proposed control strategies.
For the numerical integration of (5.1a)-(5.1b), we use a central finite difference scheme
with a mesh of 500 cells, and we approximate time derivatives with Forward Euler with
a fixed time step d𝑡 = 0.001.

For each trial, we consider 𝐷 = 0.05, 𝐿 = 𝜋, and a time horizon of 150,000 time
iterations and recorded followers and leaders percentage error, that is,

𝐸̄ 𝑖 (𝑡) =
∥𝑒𝑖 (·, 𝑡)∥2

2

max𝑡 ∥𝑒𝑖 (·, 𝑡)∥2
2

100, 𝑖 = 𝐹, 𝐿. (5.78)
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Figure 5.5: Robustness to external disturbance. Percentage error (top panel) and evolution
of 𝛼 (bottom panel) in time for the feedback control schemes (orange line for feed
forwards, yellow line for reference-governor and purple line for reference-governor with
an improved choice of 𝛼).

As an extra performance index, we borrow from the optimal transport literature [93]
the Kullback-Leibler (KL) divergence [169] (or relative entropy) between the desired
followers’ (leaders’) density and the followers’ (leaders) density, that is

𝐷𝑖𝐾𝐿 (𝑡) =
∫
S
𝜌̄𝑖 (𝑥) log

(
𝜌̄𝑖 (𝑥)
𝜌𝑖 (𝑥, 𝑡)

)
d𝑥, 𝑖 = 𝐹, 𝐿. (5.79)

We study a monomodal regulation problem. Specifically, we set𝑀𝐿 = 0.4 and choose
the von Mises distribution in (5.28) with 𝜅 = 1.8 and 𝜇 = 0 for the desired followers’
density. We report the results of the numerical example in Fig. 5.4. Specifically, we show
the initial and final displacement of the leaders’ and followers’ densities, resulting in the
same steady-state profile with both the control techniques. Then, in Fig. 5.4b and 5.4c
(upper panel), we report the time evolution of the percentage errors and KL divergences
using respectively the feed-forward and the reference-governor control schemes. In Fig.
5.4c (bottom panel), we show the time evolution of the control function 𝛼 selected
according to (5.76). Similar results were obtained for bi-modal regulation tasks but
omitted here for brevity.

5.7.1 Robustness analysis

To underscore the benefits of the strategy incorporating the reference governor control
over the simpler feed-forward control strategy, we proceed to examine the robustness of
both strategies against disturbances and structural perturbations. Our findings demon-
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strate that, as anticipated, the strategy equipped with the reference governor control offers
superior compensation for these disruptions.

Perturbations

To begin, we consider the dynamics of the followers to be perturbed by an additive
velocity field 𝑑, defined as

𝑑 (𝑥, 𝑡) = 𝜋

100
step(𝑡 − 𝑡f/2). (5.80)

This represents a positive constant drift which is suddenly introduced into the followers’
dynamics halfway through a simulation trial.

Considering the same setting as the one depicted in Fig. 5.4 where the goal is for the
followers to achieve a monomodal distribution, we applied both the feed-forward and the
reference-governor schemes, observing enhanced performance with the latter (see Fig.
5.5). Specifically, as illustrated in the top panel of Fig. 5.5, the steady-state percentage
residual error decreases from nearly 20% to approximately 10% with the introduction of
feedback.

Performance improves more significantly, when we introduce a numerical procedure
to improve the choice of 𝛼. Specifically, as the optimal 𝛼 (that is, the maximum value
still fulfilling (5.75b)) can be formalized as

𝛼(𝑡) = lim
𝜀→0+

[
min
𝑥

(
𝜌̄𝐿 (𝑥)

max[−𝑊 (𝑥, 𝑡), 𝜀]

)]1

0
, (5.81)

we practically implement it by fixing 𝜀 = 0.01. Specifically, as 𝛼 remains set to one
for extended periods (as shown in the bottom panel of Fig. 5.5), the feedback correction
intensifies, leading to a residual percentage error of only 2% despite the onset of the
perturbation (as detailed in the top panel of Fig. 5.5).

Robustness to Structural Perturbations

To evaluate robustness to structural perturbations, we assess the response to parametric
uncertainties in the characteristic length scale 𝐿 of the interaction kernel 𝑓 (see (3.24)).
This involves assuming a discrepancy between the nominal length scale used for control
design and the actual scale influencing the followers’ dynamics. Specifically, setting
𝐷 = 0.02 and using the same monomodal configuration depicted in Fig. 5.4, we
compute 𝑢 in (5.1a) using the nominal value 𝐿 = 𝜋 for both the feed-forward and
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Figure 5.6: Robustness to uncertainties: time evolution of the percentage error with the
feed-forward (FF) control scheme and the reference-governor (RG) control scheme. In
the inset, the nominal and perturbed interaction kernel.

reference-governor schemes. Conversely, in the numerical simulations, the followers are
assumed to react to the leaders’ displacement through a perturbed kernel 𝑓 , defined as
(3.24) with 𝐿 = 𝜋/6. The results of this trial, along with graphical representations of
both the nominal and perturbed kernels, are presented in Fig. 5.6. We find that that the
reference-governor scheme enhances steady-state performance, reducing the steady-state
percentage error to almost 45% as compared to 55% observed when the feed-forward
scheme is adopted. We did not document the time evolution of 𝛼 because, adhering to
the conservative approach outlined in Section 5.6.1, we fixed it at 1 throughout the trial.

Note that, in the presence of parametric uncertainties on the diffusion coefficient 𝐷
(omitted here for brevity), the behavior of both the feed-forward and reference-governor
schemes remains qualitatively similar. This similarity arises because the feedback action
𝑤 is not independent of 𝐷, as illustrated in (5.64).

5.8 An application to multi-agent leader-follower sys-
tems via continuification

Within the framework of continuification-based control approaches disucssed in Chap-
ter 3 the goal is to design microscopic control inputs to influence the spatio-temporal
dynamics of large-scale multi-agent systems.

To validate the macroscopic control solution proposed in this work, we consider a
discrete set of stochastic differential equations that replicate the leader-follower scenario
previously examined. In particular, we assume a population of 𝑁𝐿 leaders needs to steer
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(a) (b)

(c)

Figure 5.7: Discrete trial: (a) average followers’ percentage (± one standard deviation)
error and KL divergence for different values of the leaders’ mass; (b) initial and final
densities for a single trial (𝑁𝐿 = 400); (c)-(upper panel) initial and final agents displace-
ments in S for a single trial (𝑁𝐿 = 400); and (c)-(lower panel) percentage error of leaders
and followers in time for a single trial (𝑁𝐿 = 400).

the dynamics of a population of 𝑁𝐹 followers. We consider the two populations move in
S and, as often assumed in the literature [17], we set their dynamics according to

¤𝑥𝐿𝑖 = 𝑢𝑖 , 𝑖 = 1, . . . , 𝑁𝐿 (5.82a)

d𝑥𝐹𝑘 =
𝑁𝐿

𝑁𝐿 + 𝑁𝐹
𝑁𝐿∑︁
𝑗=1

𝑓 ({𝑥𝐹𝑘 , 𝑥
𝐿
𝑗 }) d𝑡 +

√
2𝐷d𝐵𝑘 , 𝑘 = 1, . . . , 𝑁𝐹 , (5.82b)

where 𝐵𝑘 is a standard Wiener process. Such a formulation represents the discrete
counterpart of (5.1a)-(5.1b) [130]. Following our solution, and in the context of a
continuification scheme, we can perform a discretization and fix the microscopic control
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inputs of the leaders 𝑢𝑖 in (5.82) as

𝑢𝑖 (𝑡) = 𝑢(𝑥𝑖 , 𝑡), 𝑖 = 1, . . . , 𝑁𝐿 , (5.83)

with 𝑢 coming from (5.44), and considering the reference governor scheme proposed in
Section 5.6.

We consider the discrete counterpart of the numerical setup discussed in Section
5.7. Specifically, we set 𝐷 = 0.05, 𝐿 = 𝜋, 𝐾𝐿 = 1, and simulate a total of 𝑁𝐿 + 𝑁𝐹 =

1000 agents. For the desired followers’ density, we adopt the monomodal von Mises
distribution utilized in the trial depicted in Fig. 5.4. Agent densities are estimated
from their positions using an ad-hoc Gaussian kernel estimation method [168], and
numerical integration is performed using the forward Euler method for leaders and the
Euler-Maruyama method for followers, with a time step of Δ𝑡 = 0.001.

We fix the initial densities of both populations to be constant and conduct 𝑛 = 128
trials, each consisting of 150,000 time steps, while exploring different feasible ratios
of leaders to followers. We characterize this numerical investigation by calculating
the average over the 𝑛 trials of the steady-state percentage error and KL divergence.
Specifically, results are depicted in Fig. 5.7a, where it is evident that we consistently
reduce the percentage error to well below 5% – a performance level also corroborated by
the KL divergence of the followers. For completeness, Fig. 5.7b and 5.7c also present the
outcomes of a single trial with 𝑁𝐿 = 400, in terms of densities, agents’ displacements,
and percentage error.

Contrary to the macroscopic simulations performed using the continuum formulation
in Section 5.7, we register a small steady-state error in the discrete model. This error
primarily arises from two factors: the finite size of the swarm, which challenges the
validity of the continuum hypothesis, and the stochastic behavior of the followers.

5.9 Extension to higher dimensions

Our one-dimensional framework can be readily extended to higher dimensions. Specif-
ically, assuming the spatial domain to be Ω := [−𝜋, 𝜋]𝑑 (with 𝑑 = 2, 3), in 𝐻2 (Ω), the
model becomes

𝜌𝐿𝑡 (x, 𝑡) + ∇ ·
[
𝜌𝐿 (x, 𝑡)u(x, 𝑡)

]
= 0, (5.84a)

𝜌𝐹𝑡 (x, 𝑡) + ∇ ·
[
𝜌𝐹 (x, 𝑡)v𝐹𝐿 (x, 𝑡)

]
= 𝐷∇2𝜌𝐹 (x, 𝑡), (5.84b)
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where ∇ · (·) and ∇2 (·) are the divergence and Laplacian operators, respectively, x ∈ Ω,
u is the control input to design, and

v𝐹𝐿 (x, 𝑡) =
∫
Ω

f ({x, y})𝜌𝐿 (y, 𝑡) dy = (f ∗ 𝜌𝐿) (x, 𝑡), (5.85)

is the circular convolution of 𝜌𝐿 with f, that is the 𝑑-dimensional repulsive interaction
kernel.

Remark 5.15. Notice that a closed form expression for f was not found. The peri-
odized kernel can be expressed as an infinite series (see (A.1) for the one-dimensional
counterpart), which can be truncated for implementation purposes.

Similarly to the one-dimensional case, to ensure mass is conserved, 𝜌𝐹 and 𝜌𝐿 are
assumed to be periodic on 𝜕Ω, and initial conditions are set similarly to (5.5) and (5.7).
Moreover, the total masses of leaders and followers are such that 𝑀𝐹 + 𝑀𝐿 = 1.

5.9.1 Feasibility analysis

Given the problem statement in Section 5.3, we seek the desired velocity field for the
followers by assuming that 𝜌̄𝐹 solves (5.84b) at steady-state

∇ ·
[
𝜌̄𝐹 (x)v̄𝐹𝐿 (x)

]
= 𝐷∇2 𝜌̄𝐹 (x). (5.86)

Unlike the one-dimensional case, this scalar relation alone does not suffice to uniquely
determine the vectorial field v̄𝐹𝐿 . Thus, following the approach in Sec. 3.4.3 of Chapter
3, we define w = 𝜌̄𝐹 v̄𝐹𝐿 and impose an irrotationality condition, leading to

∇ · w(x) = 𝐷∇2 𝜌̄𝐹 (x),

∇ × w(x) = 0,
(5.87)

with periodic boundary conditions applied to w (we refer to [42] – Sec. 1.2.5, example
1.5 – for details about how the curl is computed in two-dimensions). Being w irrotational
and Ω simply connected, we conclude that w = −∇𝜑, where 𝜑 is an unknown scalar
potential.

Using this expression of w, equation (5.87) simplifies into the Poisson equation

∇2𝜑(x) = −𝐷∇2 𝜌̄𝐹 (x) (5.88)
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which is fulfilled choosing 𝜑 = −𝐷𝜌̄𝐹 . With this definition of w and 𝜑, we obtain

v̄𝐹𝐿 (x) = 𝐷∇𝜌̄𝐹 (x)
𝜌̄𝐹 (x) , (5.89)

which is the 𝑑-dimensional extension of (5.14). With the additional irrotationality
constraint of the flux w, the higher-dimensional formulation is analogous to the one-
dimensional one.

Recalling that v̄𝐹𝐿 = f ∗ 𝜌̄𝐿 , we derive 𝜌̄𝐿 by deconvolution,

𝜌̄𝐿 (x) = 𝐻 (x) + 𝐴, (5.90)

where 𝐴 is an arbitrary constant. This deconvolution of 𝜌̄𝐿 is defined up to an arbitrary
constant due to the linearity of the convolution operator and the assumption that the
kernel is odd. Unlike the one-dimensional case, where f has a closed form, 𝐻 can only
be computed numerically [179]. Consequently, the feasibility problem is reformulated
in terms of the constant 𝐴.

Proposition 5.1. The problem outlined by (5.84a), (5.84b), and (5.9) admits a feasible
solution if there exists a value of 𝐴 in (5.90) such that

𝜌̄𝐿 (x) ≥ 0, (5.91a)∫
Ω

𝜌̄𝐿 (x) dx = 𝑀𝐿 . (5.91b)

Proposition 5.1 can be evaluated numerically in straightforward steps. One can set
𝐴 = 𝑎1 + 𝑎2 in (5.90), with 𝑎1 chosen to minimize its integral, that is, 𝑎1 = −minx 𝐻.
Then, assuming 𝑎2 ≥ 0, (5.91a) is automatically fulfilled, and, if there exists some 𝑎2

fulfilling (5.91b), feasibility is guaranteed.

5.9.2 Control design

Assuming that the feasibility condition is met, we now extend the reference-governor
scheme, which includes the feed-forward strategy, to higher dimensions. We detail
the controller for the leaders in higher dimensions, and, subsequently, we examine the
governor loop.

92



Chapter 5. Leader-Follower Density Control in Large-Scale Multi-Agent Systems

Leaders control

The leaders’ control is tasked with guiding 𝜌𝐿 toward some desired time-varying leaders’
density 𝜌̂𝐿 . This control can be straightforwardly derived following the method outlined
in Section 5.5.1. Specifically, one can choose

∇ ·
[
𝜌𝐿 (x, 𝑡)u(x, 𝑡)

]
= −𝜌̂𝐿𝑡 (x, 𝑡) − 𝐾𝐿𝑒𝐿 (x, 𝑡). (5.92)

This formulation ensures that

𝑒𝐿𝑡 (x, 𝑡) = −𝐾𝐿𝑒𝐿 (x, 𝑡), (5.93)

thereby proving point-wise exponential convergence. To explicitly recover u, the curl
condition can be added

∇ ×
[
𝜌𝐿 (x, 𝑡)u(x, 𝑡)

]
= 0, (5.94)

and the problem can then be treated similarly to the approach in [31], where it is recast as a
Poisson equation and solved using Fourier series. The periodicity of u, and consequently
the conservation of the leaders’ mass, is ensured by the same argument used in Section
5.5.1, namely, ∫

Ω

[
−𝜌̂𝐿𝑡 (x, 𝑡) − 𝐾𝐿𝑒𝐿 (x, 𝑡)

]
dx = 0. (5.95)

Governor design

Under the control action (5.92), the leaders’ behavior obeys to

𝜌𝐿 (x, 𝑡) = 𝜌̂𝐿 (𝑥, 𝑡) +Φ(x, 𝑡), (5.96)

where 𝜌̂𝐿 is some desired time-varying density and Φ represents the transient behavior,
given by

Φ(x, 𝑡) = −
[
𝜌̂𝐿 (x, 0) + 𝜌𝐿0 (x)

]
exp(−𝐾𝐿𝑡). (5.97)

Hence v𝐹𝐿 in (5.85) can be decomposed as

v𝐹𝐿 (x, 𝑡) = v̂𝐹𝐿 (x, 𝑡) + (f ∗Φ) (x, 𝑡), (5.98)
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where v̂𝐹𝐿 = f ∗ 𝜌̂𝐿 . In what follows, we recover an expression for v̂𝐹𝐿 that can be
proved to asymptotically achieve the control problem. Such an expression will be finally
deconvolved to recover 𝜌̂𝐿 for the leaders to track.

We set the following expression for the velocity field:

v̂𝐹𝐿 (x, 𝑡) = v̄𝐹𝐿 (x) + 𝛼(𝑡)w(x, 𝑡), (5.99)

where v̄𝐹𝐿 is derived from (5.89). Here, 𝛼(𝑡) ∈ [0, 1] is a control function to be
determined, and

w(x, 𝑡) = 𝐷∇𝜌̄𝐹 (x)𝑒𝐹 (x, 𝑡)
𝜌̄𝐹 (x) ( 𝜌̄𝐹 (x) − 𝑒𝐹 (x, 𝑡)) . (5.100)

defines the additional feedback term adjusted by 𝛼(𝑡).
Substituting (5.98) into (5.84b) (accounting for (5.99) and (5.100)) and expressing

the equation in terms of the error 𝑒𝐹 , we derive

𝑒𝐹𝑡 (x, 𝑡) = 𝐷∇2𝑒𝐹 (x, 𝑡) − 𝐷 [1 − exp(−𝐾𝐿𝑡) − 𝛼(𝑡)] ∇ ·
[
𝑒𝐹 (x, 𝑡) ∇𝜌̄

𝐹 (x, 𝑡)
𝜌̄𝐹 (x, 𝑡)

]
+ exp(−𝐾𝐿𝑡)∇ ·

[(
𝜌̄𝐹 (x, 𝑡) − 𝑒𝐹 (x, 𝑡)

)
(f ∗ 𝜌𝐿0 ) (x) − 𝐷∇𝜌̄𝐹 (x)

]
. (5.101)

Theorem 5.5. In a feasible scenario according to Proposition 5.1, (5.101) converges to
0 in L2, if

𝐾𝑟𝑔ℎ = −2𝐷 + 𝐷∥𝐺1 (·)∥∞ + ∥𝐻1 (·)∥∞ < 0 (5.102)

with

𝐺1 (x) = ∇ ·
[
∇𝜌̄𝐹 (x)
𝜌̄𝐹 (x)

]
, (5.103)

𝐻1 (x) = ∇ ·
[
(f ∗ 𝜌𝐿0 ) (x)

]
. (5.104)

If 𝐾𝐿 ≫ |𝐾𝑟𝑔ℎ |, the rate of convergence of the error is upper bounded by 𝐾𝑟𝑔ℎ.

Proof. Choosing ∥𝑒𝐹 ∥2
2 as a Lyapunov functional for (5.101), we obtain

(
∥𝑒𝐹 (·, 𝑡)∥2

2

)
𝑡
= 2𝐷

∫
Ω

𝑒𝐹 (x, 𝑡)∇2𝑒𝐹 (x, 𝑡) dx

− 2𝐷 [1 − exp(−𝐾𝐿𝑡) − 𝛼(𝑡)]
∫
Ω

𝑒𝐹 (x, 𝑡)∇ ·
[
𝑒𝐹 (x, 𝑡) ∇𝜌̄

𝐹 (x)
𝜌̄𝐹 (x)

]
dx
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+ 2exp(−𝐾𝐿𝑡)
∫
Ω

𝑒𝐹 (x, 𝑡)∇ · [
(
𝜌̄𝐹 (x, 𝑡) − 𝑒𝐹 (x, 𝑡)

)
(f ∗ 𝜌𝐿0 ) (x) − 𝐷∇𝜌̄𝐹 (x)] dx.

(5.105)

Utilizing vectorial identities and the divergence theorem, this can be simplified to(
∥𝑒𝐹 (·, 𝑡)∥2

2

)
𝑡
= −2𝐷∥∇𝑒𝐹 (·, 𝑡)∥2

2−𝐷 [1 − exp(−𝐾𝐿𝑡) − 𝛼(𝑡)]
∫
Ω

(𝑒𝐹 (x, 𝑡))2𝐺1 (x) dx

− exp(−𝐾𝐿𝑡)
∫
Ω

(𝑒𝐹 (x, 𝑡))2𝐻1 (x) dx + 2exp(−𝐾𝐿𝑡)
∫
Ω

𝑒𝐹 (x, 𝑡)𝐻2 (x) dx, (5.106)

where 𝐻2 = ∇ · ( 𝜌̄𝐹 (f ∗ 𝜌𝐿0 ) − 𝐷∇𝜌̄𝐹). By exploiting bounds similar to those derived
for Theorem 3 and 4, we can establish(

∥𝑒𝐹 (·, 𝑡)∥2
2

)
𝑡
≤ [−2𝐷 + 𝐷∥𝐺1 (·)∥∞ + ∥𝐻1 (·)∥∞] ∥𝑒𝐹 (·, 𝑡)∥2

2

+ 2∥𝐻2 (·)∥2exp(−𝐾𝐿𝑡)∥𝑒𝐹 (·, 𝑡)∥2. (5.107)

Under the theorem hypothesis, the bounding system is in the form discussed in Lemma
1.6, making the theorem proved. ■

Convergence is ensured for any 𝛼 ∈ [0, 1]. The case where 𝛼 = 0 for all 𝑡 ≥ 0
coincides with the feed-forward scheme proposed in the one-dimensional case. By
performing a deconvolution of v𝐹𝐿 , we derive

𝜌̂𝐿 (x, 𝑡) = 𝜌̄𝐿 (x) + 𝛼(𝑡)𝑊 (x, 𝑡), (5.108)

where 𝜌̄𝐿 comes from (5.90) and 𝑊 represents the deconvolution of (5.100), expressed
as:

𝑊 (x, 𝑡) = 𝑄(x) + 𝛽(𝑡), (5.109)

with 𝛽(𝑡) being an arbitrary time-dependent function.

Note that the deconvolution 𝑊 is defined up to an arbitrary function of time due
to the linearity of the convolution operator and the assumption that the kernel is odd.
Consequently, the computation of 𝑄 must be performed numerically, as no closed form
for the periodic kernel in higher dimensions has been established. Similarly, to the
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(a) (b)

(c)

Figure 5.8: Monomodal trial in 2D: (a) followers’ density at the end of the trial; (b)
leaders’ density at the end of the trial; and (c) time evolution of the percentage error (top
panel), KL divergences (middle panel), and 𝛼 (bottom panel).

one-dimensional case, 𝛼 and 𝛽 can be selected such that∫
Ω

𝑊 (x, 𝑡) dx = 0, ∀𝑡 ≥ 0 (5.110a)

𝜌̄𝐿 (x) + 𝛼(𝑡)𝑊 (x, 𝑡) ≥ 0, ∀𝑡 ≥ 0. (5.110b)

For choosing 𝛼, the same rationale used in Section 5.6.1 can be applied.
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5.9.3 Numerical validation

For validation, we extended the trial depicted in Fig. 5.4 from one to two dimensions.
Specifically, we set 𝐷 = 0.05, 𝑀𝐹 = 0.6, and 𝐾𝐿 = 10. For the desired followers’
density, we adopted the two-dimensional version of (5.28) – see Equation (25) in [31]
for an explicit formula – with the concentration coefficients in each direction set at
𝑘1 = 𝑘2 = 0.5. This configuration satisfied the feasibility condition.

Using the reference-governor scheme and selecting 𝛼 as outlined in Section 5.6.1, we
numerically integrated (5.84b) and (5.84a) using a central finite difference scheme on a
50×50 mesh. The forward Euler method was employed to estimate time derivatives, with
a time step of d𝑡 = 0.01. Starting from a constant initial density for both populations, we
observed the results shown in Fig. 5.8. Both the percentage errors and KL divergences
converged to zero within approximately 50 time units, and the weighting factor 𝛼, which
adjusts the amplitude of the feedback correction, stabilized at about 0.2.

5.10 Discussion

We developed a continuum framework to address the leader-follower density control
problem within large-scale multi-agent systems. We assumed followers to be random
walkers at the microscopic scale, based on a number of studies supporting such a micro-
scopic model for engineering applications.

We established criteria for assessing the problem’s feasibility, leveraging informa-
tion about the number of reactive leaders in the group, the desired followers’ density,
the interaction kernel scale, and the followers’ dynamics. Both the proposed control
architectures ensure global exponential stability towards a desired spatial organization,
for one and multi-dimensional domains. Differently from relevant literature [60, 130],
we provided closed forms for the macroscopic control actions and useful bounds for the
rate of convergence.

Although convergence is ensured in the limiting scenario of infinite populations, we
demonstrated a straightforward methodology to apply our macroscopic control action to
swarm of finite size, taking inspiration from [29, 30, 31]. We emphasize that analytical
guarantees of convergence when such a discretization of the continuum control action
is performed, are still missing. Such guarantees could be explored using classical works
about two-scale convergence [181] and asymptotic formal analysis [182].

This is not the only limitation of the study that calls for future research. In fact,
future work should aim at (𝑖) overcoming the kinematic assumption that is used to model
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the populations’ motion as mass conservation laws; (𝑖𝑖) accounting for topological and
networked interactions, through, for example, the use of graphons [100]; (𝑖𝑖𝑖) introducing
in the model interactions taking place between followers; (𝑖𝑣) analytically study the
different robustness properties of the two control schemes we propose, which here were
only numerically addressed; and (𝑣) proposing an experimental, localized and distributed
validation of the strategies within the mixed-reality framework described in [31] – in so
doing, local density estimation methods need to be exploited [183].

Despite these limitations, the proposed work makes contributions to the theory of
density-control of large ensembles that are expected to find application in critical engi-
neering areas such as traffic control and swarm robotics, and opens the door to math-
ematical treatment of control problems in continuum models describing heterogeneous
teams.
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6 Reacting Mixtures of Lead-
ers and Followers

In this Chapter, we expand the theoretical framework we developed in Chapter 5 to react-
ing mixtures of leaders and followers. In particular, we consider a scenario where agents
can switch between being leaders or followers while solving a density control problem.
This set-up is framed within the biological mechanism of behavioral plasticity, that is,
the tendency of individuals to modify their behavior when appropriately stimulated. This
leads to a more profound comprehension of plasticity phenomena and shows a possible
direction to inspire new, more robust and flexible, control solution for swarms of agents.

6.1 Introduction

Leadership is the capability to foster and speed-up the emergence of distributed intelli-
gence [184]. Through the lenses of complex systems theory, this behavior is perceived
through the actions of special individuals (i.e., agents), who are willing to create condi-
tions enabling productive future states [185].

Leadership emergence is largely observed across different animal species. Pigeons’
homing maneuvers are driven by those individuals exhibiting better flight characteristics
[186]. Fish schooling, which has often been considered as caused by egalitarian self-
organization [187], is a prototypical example where the role of leaders is crucial to
perform predators avoidance and energy saving [188]. Moreover, it is observed in human
networks performing motor coordination tasks [10].

Sometimes, the tendency to become a leader is DNA-encoded. This is, for example,
the case of clown-fish, in which the school organization is delegated to the only female
specimen in the group. Females are larger than males, and, when a leader dies, the
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strongest male in the school transforms itself into a female and become the new leader
[189].

In many other cases, individuals can become leaders because of some specific state
they experience while being followers [190]. For example, fish exiting the follower
state to become leaders, may be due to knowledge about food’s or predators’ location
[191, 192]. Similarly, in pedestrian groups, becoming the individual driving the crowd
coincides with being on the border of the formation at the right time [115]. Moreover,
we point out that leading a group during a collective task is necessarily associated with
a higher energetic expenditure and exposes to possible risks (as that of predators). This
points at the necessity for individuals of alternating between being a leader and a follower.

Under this perspective, being leaders or followers is not an irreversible condition,
and roles’ switching is a crucial mechanism to increase performance and reduce the
cost and risk associated with leading roles. The biological mechanism underlying this
switching is typically referred as behavioral plasticity [193], that is a possible declination
of phenotypic plasticity [194]. It refers to changes in an organism behavior resulting from
exposure to external and internal stimuli.

We point out that many papers in the existing Literature have been devoted to de-
signing solutions for control applications and swarm robotics driving inspiration from
this leader-follower paradigm [195]. Interestingly, within this context, the amount of
work accounting for behavioral plasticity mechanisms is consistently less [196]. In the
perspective work [197], it is pointed out that implementing plasticity in robots’ swarms
may be a viable option to face the high unpredictability of real world applications and
embed agents with the necessary flexibility to accomplish a wide spectrum of tasks.

In this Chapter, we develop a simple continuum model for a large population of agents
solving a density control problem, while undergoing a behavioral plasticity mechanism.
Our model takes inspiration from the Literature about reacting mixtures [176], as we
decided to model plasticity as a chemical reaction taking place between two fluids. In
particular, we expand the model we presented in Chapter 5 to describe three subgroups
of agents, that are, leaders, followers and non-reactive followers. All the agents interact
between themselves, and (𝑖) leaders can be directly controlled and eventually transform
into followers, (𝑖𝑖) followers can eventually transform into leaders, and (𝑖𝑖𝑖) non-reactive
followers remain followers being subject only to the interactions with the rest of the
group. This spectrum of roles let us distinguish between agents which are willing to take
leadership and those which only passively follow the group behavior.

We derive a necessary and sufficient condition for the density control problem to
admit a solution, and we link it to important quantities needed to achieve the desired goal.
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These include the amount of non-reactive followers, the interaction kernel parameters,
the desired density, and the diffusivity of the agents. After formulating the problem, we
prove local convergence of the proposed control strategy towards the desired behavior.
We also provide some preliminary results about robustness properties at for different
levels of plasticity.

The rest of the Chapter is organized as follows. In Section 6.2 we study the problem
over one-dimensional periodic domains. In particular, in Section 6.2.1 we present our
model, in Section 6.2.2 we pose the problem statement, and in Section 6.2.3 we present
our solution and run the stability analysis. The theoretical framework is then expanded to
higher-dimensional periodic domains in Section 6.2.4. All the results are complemented
by numerical examples. Moreover, in Sec. 6.4, we give some preliminary numerical
results about robustness to parametric uncertainty for different levels of plasticity.

6.2 One-dimensional setting
We start by considering a one-dimensional setting.

6.2.1 The model

We model a population of behaviorally plastic agents using the mathematical framework
of reacting mixtures [176]. Specifically, we consider three convection diffusion equations
on S, that are

𝜌𝐿𝑡 (𝑥, 𝑡) +
[
𝜌𝐿 (𝑥, 𝑡)𝑢(𝑥, 𝑡)

]
𝑥
+

[
𝜌𝐿 (𝑥, 𝑡) ( 𝑓 ∗ 𝜌) (𝑥, 𝑡)

]
𝑥
= 𝐷𝜌𝐿𝑥𝑥 (𝑥, 𝑡) + 𝑞(𝑥, 𝑡) (6.1a)

𝜌𝐹𝑡 (𝑥, 𝑡) +
[
𝜌𝐹 (𝑥, 𝑡) ( 𝑓 ∗ 𝜌) (𝑥, 𝑡)

]
𝑥
= 𝐷𝜌𝐹𝑥𝑥 (𝑥, 𝑡) − 𝑞(𝑥, 𝑡), (6.1b)

𝜂𝐹𝑡 (𝑥, 𝑡) +
[
𝜂𝐹 (𝑥, 𝑡) ( 𝑓 ∗ 𝜌) (𝑥, 𝑡)

]
𝑥
= 𝐷𝜂𝐹𝑥𝑥 (𝑥, 𝑡). (6.1c)

These equations model the spatio-temporal dynamics of the density of three subsets of
agents. Respectively:

• leaders (whose density is 𝜌𝐿 : S × R≥0 → R≥0): they (𝑖) react to the rest of the
group, (𝑖𝑖) can be controlled through the velocity field 𝑢 : S × R≥0 → R, and (𝑖𝑖𝑖)
can eventually become followers thanks to the reacting mechanism 𝑞 : S ×R≥0 →
R;

• followers (whose density is 𝜌𝐹 : S × R≥0 → R≥0): they (𝑖) react to the rest of the
population, and (𝑖𝑖) can become leaders thanks to the reacting mechanism 𝑞;
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• non-reactive followers (whose density is 𝜂𝐹 : S ×R≥0 → R≥0): they only react to
the rest of the population.

We consider all the agents interact among themselves through a periodic interaction
kernel 𝑓 (fulfilling the same constraints we considered in the previous chapters), and
we model it through the cross convectional term involving 𝜌 = 𝜌𝐿 + 𝜌𝐹 + 𝜂𝐹 . We also
consider all the populations are influenced by a diffusion term, weighted by the diffusion
coefficient 𝐷, modeling noise taking place at the microscopic scale.

By summing (6.1a), (6.1b) and (6.1c), we find the dynamics of the density of the
whole population, that is

𝜌𝑡 (𝑥, 𝑡) +
[
𝜌𝐿 (𝑥, 𝑡)𝑢(𝑥, 𝑡)

]
𝑥
+ [𝜌(𝑥, 𝑡) ( 𝑓 ∗ 𝜌) (𝑥, 𝑡)]𝑥 = 𝐷𝜌𝑥𝑥 (𝑥, 𝑡), (6.2)

which, we remark, is independent from the reacting term 𝑞. By fixing periodic boundary
conditions for (6.1a), (6.1b) and (6.1c), that is

𝜌𝐿 (−𝜋, 𝑡) = 𝜌𝐿 (𝜋, 𝑡), ∀𝑡 ∈ R≥0, (6.3a)

𝜌𝐹 (−𝜋, 𝑡) = 𝜌𝐹 (𝜋, 𝑡), ∀𝑡 ∈ R≥0, (6.3b)

𝜂𝐹 (−𝜋, 𝑡) = 𝜂𝐹 (𝜋, 𝑡), ∀𝑡 ∈ R≥0, (6.3c)

we can ensure the total population mass is conserved. In particular, we have(∫
S
𝜌(𝑥, 𝑡) d𝑥

)
𝑡

= −
[
𝜌𝐿 (𝑥, 𝑡)𝑢(𝑥, 𝑡)

] 𝜋
−𝜋 − [𝜌(𝑥, 𝑡) ( 𝑓 ∗ 𝜌) (𝑥, 𝑡)] 𝜋−𝜋 + 𝐷 [𝜌𝑥] 𝜋−𝜋 = 0,

(6.4)

because of periodicity. Notice that (6.1c) is also conservative on its own with respect
to the mass, but the same does not hold for (6.1a) and (6.1b), which are affected by the
reacting term 𝑞. We remark that if

∫
S 𝑞 d𝑥 is equal to 0, there is no net mass transfer

between leaders and followers.

For simplicity we normalize the total mass to unity by setting∫
S
𝜌(𝑥, 𝑡) d𝑥 = 𝑀 = 𝑀𝐿 (𝑡) + 𝑀𝐹 (𝑡) +Φ𝐹 = 1, (6.5)

where 𝑀 is the total mass of the group, 𝑀𝐿 is the leaders’ mass, 𝑀𝐹 is the followers’
mass, and Φ𝐹 is the mass of non-reactive followers (it is time-invariant as the dynamics
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of 𝜂𝐹 is not affected by the reacting term). We define

𝑝 = 1 −Φ𝐹 , (6.6)

as the degree of plasticity of the system, quantifying the ratio of the whole population
that can be engaged in the reaction mechanism.

Equations (6.1) are also complemented by the following initial conditions

𝜌𝐿 (𝑥, 0) = 𝜌𝐿0 (𝑥), (6.7a)

𝜌𝐹 (𝑥, 0) = 𝜌𝐹0 (𝑥), (6.7b)

𝜂𝐹 (𝑥, 0) = 𝜂𝐹0 (𝑥). (6.7c)

6.2.2 Problem statement

We consider the problem of choosing 𝑢 and 𝑞 in (6.1) so that the population’s density
asymptotically converges towards a desired time-invariant density profile, say 𝜌̄, that is

lim
𝑡→∞

∥ 𝜌̄(𝑥) − 𝜌(𝑥, 𝑡)∥2 = 0. (6.8)

As an additional specification, we assume we want to reduce the steady-state mass of
leaders, so as to reduce the computational effort devoted to their control.

6.2.3 Control design

Velocity field

Let us define the error function

𝑒(𝑥, 𝑡) = 𝜌̄(𝑥) − 𝜌(𝑥, 𝑡). (6.9)

Using (6.2), we find that the error dynamics is given by

𝑒𝑡 (𝑥, 𝑡) =
[
𝜌𝐿 (𝑥, 𝑡)𝑢(𝑥, 𝑡)

]
𝑥
+ [𝜌(𝑥, 𝑡) ( 𝑓 ∗ 𝜌) (𝑥, 𝑡)]𝑥 − 𝐷𝜌𝑥𝑥 (𝑥, 𝑡), (6.10)

with periodic boundary conditions and initial conditions which can be derived from those
of (6.1a), (6.1b), (6.1c).

Theorem 6.1 (Global exponential convergence). If 𝜌𝐿 > 0 for any 𝑥 ∈ S and 𝑡 ∈ R≥0,
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choosing 𝑢 in (6.1a) from[
𝜌𝐿 (𝑥, 𝑡)𝑢(𝑥, 𝑡)

]
𝑥
= −𝐾𝑒(𝑥, 𝑡) − [𝜌(𝑥, 𝑡) ( 𝑓 ∗ 𝜌) (𝑥, 𝑡)]𝑥 + 𝐷𝜌𝑥𝑥 (𝑥, 𝑡), (6.11)

where 𝐾 > 0 is a control gain, makes the error dynamics globally, exponentially conver-
gent to 0 point-wisely in S, that is

𝑒(𝑥, 𝑡) = 𝑒(𝑥, 0) exp{−𝐾𝑡}. (6.12)

Proof. Substituting (6.11) in (6.10), it results

𝑒𝑡 (𝑥, 𝑡) = −𝐾𝑒(𝑥, 𝑡), (6.13)

which is linear and not involving spatial derivatives. Its analytical solution yields to
(6.12). ■

Remark 6.1. We remark that 𝑢 can be found by the spatial integration of (6.11), as

𝑢(𝑥, 𝑡) = 1
𝜌𝐿 (𝑥, 𝑡)

[
−𝐾

∫
𝑒(𝑥, 𝑡) d𝑥 − 𝜌(𝑥, 𝑡) ( 𝑓 ∗ 𝜌) (𝑥, 𝑡) + 𝐷𝜌𝑥

]
, (6.14)

thus making it well-defined only if 𝜌𝐿 > 0. We also remark that, via arguments similar
to those in Corollary 5.1, 𝑢 can be proved to be periodic.

Remark 6.2. Under the hypothesis of theorem 6.1, and from (6.12), it results

𝜌(𝑥, 𝑡) = 𝜌̄(𝑥) [1 − exp{−𝐾𝑡}] + 𝜌0 (𝑥)exp{−𝐾𝑡}, (6.15)

where 𝜌0 = 𝜌𝐿0 + 𝜌𝐹0 + 𝜂𝐹0 .

Remark 6.3. The hypothesis about the strict positivity of 𝜌𝐿 in Theorem 6.1 can be
easily fulfilled in microscopic scenarios, where densities are estimated from the agents’
positions using kernel estimation methods that can be chosen by the designer. For the
hypothesis to hold in the macroscopic framework we are considering, we can design the
reacting term 𝑞 accordingly.
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Reacting term

Here, we design the reacting term 𝑞 in (6.1a) and (6.1b). Our design is driven by two
main reasons, (𝑖) to ensure the hypothesis about the strict positivity of 𝜌𝐿 in Theorem
6.1 holds and (𝑖𝑖) to achieve a desired leaders-to-followers’ mass ratio.

We choose the reacting term 𝑞 in (6.1a) and (6.1b) as

𝑞(𝑥, 𝑡) = 1
2

[
𝜌𝐿 (𝑥, 𝑡)𝑢(𝑥, 𝑡)

]
𝑥
+ 1

2
[𝜌∗ (𝑥, 𝑡) ( 𝑓 ∗ 𝜌) (𝑥, 𝑡)]𝑥 −

𝐷

2
𝜌∗𝑥𝑥 (𝑥, 𝑡) + 𝑔(𝑥, 𝑡),

(6.16)

where

𝜌∗ (𝑥, 𝑡) = 𝜌𝐿 (𝑥, 𝑡) − 𝜌𝐹 (𝑥, 𝑡), (6.17)

and 𝑔 obeys to the mass action law

𝑔(𝑥, 𝑡) = 𝐾𝐹𝐿𝜌𝐹 (𝑥, 𝑡) − 𝐾𝐿𝐹𝜌𝐿 (𝑥, 𝑡), (6.18)

with 𝐾𝐿𝐹 , 𝐾𝐹𝐿 > 0 being the rates of the reaction.

Theorem 6.2 (Strict positivity of 𝜌𝐿 and 𝜌𝐹 at steady-state). Choosing 𝑢 as in (6.11)
and 𝑞 as in (6.16), there exists a steady-state solution for (6.1) with 𝜌̄𝐿 , 𝜌̄𝐹 > 0 and
𝜂𝐹 ≥ 0 for any 𝑥 ∈ S, if and only if

Φ𝐹 < min
𝑥

{
𝜌̄(𝑥)

∫
S ℎ(𝑥) d𝑥
ℎ(𝑥)

}
, (6.19)

with

ℎ(𝑥) = exp
{

1
𝐷

∫
( 𝑓 ∗ 𝜌̄) (𝑥) d𝑥

}
. (6.20)

Proof. ( ⇐= )The spatio-temporal dynamics of 𝜌∗ (see (6.17)) obeys to the equation

𝜌∗𝑡 (𝑥, 𝑡) = 2𝑞(𝑥, 𝑡) −
[
𝜌𝐿 (𝑥, 𝑡)𝑢(𝑥, 𝑡)

]
𝑥
− [𝜌∗ (𝑥, 𝑡) ( 𝑓 ∗ 𝜌) (𝑥, 𝑡)]𝑥 + 𝐷𝜌∗𝑥𝑥 (𝑥, 𝑡).

(6.21)

We recall that, 𝜌𝐿 and 𝜌𝐹 can be recovered from 𝜌, 𝜌∗ and 𝜂𝐹 by the change of variables
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𝜌𝐿 (𝑥, 𝑡) = 1
2

[
𝜌(𝑥, 𝑡) + 𝜌∗ (𝑥, 𝑡) − 𝜂𝐹 (𝑥, 𝑡)

]
, (6.22a)

𝜌𝐹 (𝑥, 𝑡) = 1
2

[
𝜌(𝑥, 𝑡) − 𝜌∗ (𝑥, 𝑡) − 𝜂𝐹 (𝑥, 𝑡)

]
. (6.22b)

Substituting (6.16) into (6.21), and being aware of the change of variables (6.22), yields

𝜌∗𝑡 (𝑥, 𝑡) = −𝑎 𝜌∗ (𝑥, 𝑡) + 𝑏 𝜌(𝑥, 𝑡) − 𝑏 𝜂𝐹 (𝑥, 𝑡), (6.23)

where

𝑎 ≔ 𝐾𝐹𝐿 + 𝐾𝐿𝐹 , (6.24a)

𝑏 ≔ 𝐾𝐹𝐿 − 𝐾𝐿𝐹 . (6.24b)

Knowing that, under the control action discussed in Theorem 6.1, 𝜌̄ is a steady-state
solution for (6.2), we look for steady-state solutions of (6.23) and (6.1c). We start by
considering (6.1c) fixing 𝜂𝐹𝑡 = 0, 𝜂𝐹 (𝑥, 𝑡) = 𝜂𝐹 (𝑥), and 𝜌(𝑥, 𝑡) = 𝜌̄(𝑥), yielding to

𝐷𝜂𝐹𝑥𝑥 (𝑥) −
[
𝜂𝐹 (𝑥) ( 𝑓 ∗ 𝜌̄) (𝑥)

]
𝑥
= 0. (6.25)

Integrating (6.25) twice in space (see Appendix E.2 for more details) yields

𝜂𝐹 (𝑥) = Φ𝐹∫
S ℎ(𝑥) d𝑥

ℎ(𝑥). (6.26)

We remark that 𝜂𝐹 is positive, periodic, and summing to Φ𝐹 by construction (we refer
the reader to Appendix E.2 for more details). We can now seek for the steady-state of 𝜌∗

setting 𝜌∗𝑡 = 0, 𝜌(𝑥, 𝑡) = 𝜌̄(𝑥), 𝜌∗ (𝑥, 𝑡) = 𝜌̄∗ (𝑥), 𝜂𝐹 (𝑥, 𝑡) = 𝜂𝐹 (𝑥) in (6.23). This results
in

𝜌̄∗ (𝑥) = 𝑏

𝑎

[
𝜌̄(𝑥) − 𝜂𝐹 (𝑥)

]
. (6.27)

Hence, using the change of variables (6.22), at steady-state it results

𝜌̄𝐿 (𝑥) = 1
2

[
𝜌̄(𝑥)

(
1 + 𝑏

𝑎

)
− 𝜂𝐹 (𝑥)

(
1 + 𝑏

𝑎

)]
, (6.28a)

𝜌̄𝐹 (𝑥) = 1
2

[
𝜌̄(𝑥)

(
1 − 𝑏

𝑎

)
− 𝜂𝐹 (𝑥)

(
1 − 𝑏

𝑎

)]
. (6.28b)
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Being |𝑏/𝑎 | < 1 by construction, 𝜌̄𝐿 and 𝜌̄𝐹 are strictly positive if

𝜌̄(𝑥) > 𝜂𝐹 , ∀ 𝑥 ∈ S, (6.29)

which is satisfied under condition (6.19) (substituting (6.26) into (6.29)).
( =⇒ ) The existence of a steady-state solution for (6.1) with 𝜌𝐿 , 𝜌𝐹 > 0 and 𝜂𝐹

implies that

𝜌̄𝐿 (𝑥) + 𝜌̄𝐹 (𝑥) > 0, ∀ 𝑥 ∈ S. (6.30)

By adding and subtracting 𝜂𝐹 , we obtain

𝜌̄𝐿 (𝑥) + 𝜌̄𝐹 (𝑥) + 𝜂𝐹 (𝑥) > 𝜂𝐹 (𝑥), ∀ 𝑥 ∈ S, (6.31)

which is equivalent to

𝜌̄(𝑥) > 𝜂𝐹 (𝑥), ∀ 𝑥 ∈ S (6.32)

Substituting (6.26) into (6.32) makes the claim proved. ■

Remark 6.4. The result of Theorem 6.2 regards feasibility, as it proves, under which
conditions, there exist a meaningful steady-state solution for (6.1) satisfying the problem
statement described in Section 6.2.2. Nothing about the stability of this steady-state
solution has been said so far.

Remark 6.5. The condition in Theorem 6.2, can be equivalently given in terms of
plasticity (see (6.6)). This result in the condition

𝑝 > 1 − min
𝑥

{
𝜌̄(𝑥)

∫
S ℎ(𝑥) d𝑥
ℎ(𝑥)

}
, (6.33)

telling the minimum degree of plasticity that is needed to solve the density control problem.
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Stability analysis

In this section, we assess the stability properties of the control solution given by the
control velocity field 𝑢 and the reactive term 𝑞 as discussed in Theorem 6.1 and 6.2,
respectively. From the theorems, we know that, (𝑖) under the effect of 𝑢, 𝜌 approaches
𝜌̄ asymptotically, if 𝜌𝐿 remains strictly positive, and (𝑖𝑖) under the effect of 𝑞, and
if condition (6.19) is fulfilled, there exists a steady-state solution making the problem
statement in Section 6.2.2 fulfilled, with 𝜌̄𝐿 > 0.

Next, we prove local stability of the solution whose existence is proved in Theorem
6.2. Let us recall the function 𝑒 = 𝜌̄ − 𝜌, and let us define the error functions

𝑒∗ (𝑥, 𝑡) = 𝜌̄∗ (𝑥) − 𝜌∗ (𝑥, 𝑡), (6.34a)

𝑒𝜂 (𝑥, 𝑡) = 𝜂𝐹 (𝑥) − 𝜂𝐹 (𝑥, 𝑡), (6.34b)

with 𝜌̄∗ coming from (6.27), and 𝜂𝐹 (𝑥) coming from (6.26).

Theorem 6.3 (Local stability). Assuming Theorem 6.2 is fulfilled, the error functions
(6.9), (6.34a) and (6.34b) locally converge to 0 almost everywhere if

∥ 𝜌̄𝑥 (·)∥2 <
2𝐷

∥ 𝑓 (·)∥2
(6.35)

Proof. The error dynamics under the effect of 𝑢 and 𝑞 is given by

𝑒𝑡 (𝑥, 𝑡) = −𝐾 𝑒(𝑥, 𝑡), (6.36a)

𝑒∗𝑡 (𝑥, 𝑡) = −𝑎 𝑒∗ (𝑥, 𝑡) + 𝑏 𝑒(𝑥, 𝑡) − 𝑏 𝑒𝜂 (𝑥, 𝑡), (6.36b)

𝑒
𝜂
𝑡 (𝑥, 𝑡) + [𝑒𝜂 (𝑥, 𝑡) ( 𝑓 ∗ 𝜌̄) (𝑥)]𝑥 − [𝑒𝜂 (𝑥, 𝑡) ( 𝑓 ∗ 𝑒) (𝑥, 𝑡)]𝑥 =

= 𝐷𝑒
𝜂
𝑥𝑥 (𝑥, 𝑡) −

[
𝜂𝐹 (𝑥) ( 𝑓 ∗ 𝑒) (𝑥, 𝑡)

]
𝑥
. (6.36c)

The first two equations of the error system are linear and not involving spatial derivatives.
The third equation, instead is nonlinear and involving spatial derivatives.

By linearizing the last equation, we can rephrase the error system as

𝑒𝑡 (𝑥, 𝑡) = −𝐾 𝑒(𝑥, 𝑡), (6.37a)

𝑒∗𝑡 (𝑥, 𝑡) = −𝑎 𝑒∗ (𝑥, 𝑡) + 𝑏 𝑒(𝑥, 𝑡) − 𝑏 𝑒𝜂 (𝑥, 𝑡), (6.37b)

𝑒
𝜂
𝑡 (𝑥, 𝑡) + [𝑒𝜂 (𝑥, 𝑡) ( 𝑓 ∗ 𝜌̄) (𝑥)]𝑥 = 𝐷𝑒

𝜂
𝑥𝑥 (𝑥, 𝑡) −

[
𝜂𝐹 (𝑥) ( 𝑓 ∗ 𝑒) (𝑥, 𝑡)

]
𝑥
. (6.37c)

Being (6.37a) independent from the other equations and point-wisely convergent to 0,
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we study the system fixing 𝑒 = 0. In particular, the linearized dynamics of 𝑒𝜂 becomes

𝑒
𝜂
𝑡 (𝑥, 𝑡) + [𝑒𝜂 (𝑥, 𝑡) ( 𝑓 ∗ 𝜌̄) (𝑥)]𝑥 = 𝐷𝑒

𝜂
𝑥𝑥 (𝑥, 𝑡). (6.38)

Let us introduce the Lyapunov functional

𝑉 (𝑡) = ∥𝑒𝜂 (·, 𝑡)∥2
2. (6.39)

The time derivative of 𝑉 can be expressed as

𝑉𝑡 (𝑡) = 2
∫
S
𝑒𝜂 (𝑥, 𝑡)𝑒𝜂𝑡 (𝑥, 𝑡) d𝑥, (6.40)

and by substituting (6.38), we get

𝑉𝑡 (𝑡) = 2𝐷
∫
S
𝑒𝜂 (𝑥, 𝑡)𝑒𝜂𝑥𝑥 (𝑥, 𝑡) d𝑥 − 2

∫
S
𝑒𝜂 (𝑥, 𝑡) [𝑒𝜂 (𝑥, 𝑡) ( 𝑓 ∗ 𝜌̄) (𝑥)]𝑥 d𝑥. (6.41)

We can expand the fist term at second member of (6.41) as

2𝐷
∫
S
𝑒𝜂 (𝑥, 𝑡)𝑒𝜂𝑥𝑥 (𝑥, 𝑡) d𝑥 = −2𝐷

∫
S

(
𝑒
𝜂
𝑥 (𝑥, 𝑡)

)2 d𝑥 = −2𝐷∥𝑒𝜂𝑥 (·, 𝑡)∥2
2, (6.42)

where we applied integration by parts (recalling the periodicity of the functions) and the
definition of L2-norm. We can similarly expand the second term at second member of
(6.41) as

− 2
∫
S
𝑒𝜂 (𝑥, 𝑡) [𝑒𝜂 (𝑥, 𝑡) ( 𝑓 ∗ 𝜌̄) (𝑥)]𝑥 d𝑥 = 2

∫
S
𝑒
𝜂
𝑥 (𝑥, 𝑡)𝑒𝜂 (𝑥, 𝑡) ( 𝑓 ∗ 𝜌̄) (𝑥) d𝑥 =

=

∫
S

[
(𝑒𝜂 (𝑥, 𝑡))2

]
𝑥
( 𝑓 ∗ 𝜌̄) (𝑥) d𝑥 = −

∫
S
(𝑒𝜂 (𝑥, 𝑡))2 ( 𝑓 ∗ 𝜌̄)𝑥 (𝑥) d𝑥, (6.43)

where we used integration by parts (twice), and exploited the identity
[
(𝑒𝜂)2]

𝑥
= 2𝑒𝜂𝑒𝜂𝑥 .

Substituting (6.42) and (6.43) into (6.41), we obtain

𝑉𝑡 (𝑡) = −2𝐷∥𝑒𝜂𝑥 (·, 𝑡)∥2
2 −

∫
S
(𝑒𝜂 (𝑥, 𝑡))2 ( 𝑓 ∗ 𝜌̄)𝑥 (𝑥) d𝑥. (6.44)

By using the Poincaré-Wirtinger inequality (see Lemma 1.4 in Chapter 1) we can perform
the bound

𝑉𝑡 (𝑡) ≤ −2𝐷∥𝑒𝜂 (·, 𝑡)∥2
2 −

∫
S
(𝑒𝜂 (𝑥, 𝑡))2 ( 𝑓 ∗ 𝜌̄)𝑥 (𝑥) d𝑥. (6.45)
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6.2. One-dimensional setting

Regarding the second term at the right-hand side of (6.45), we can say����∫
S
(𝑒𝜂 (𝑥, 𝑡))2 ( 𝑓 ∗ 𝜌̄)𝑥 (𝑥) d𝑥

���� ≤ ∫
S

���(𝑒𝜂 (𝑥, 𝑡))2 ( 𝑓 ∗ 𝜌̄)𝑥 (𝑥)
��� d𝑥 =

= ∥𝑒𝜂 (·, 𝑡)𝑒𝜂 (·, 𝑡) ( 𝑓 ∗ 𝜌̄)𝑥 (·)∥1 ≤ ∥𝑒𝜂 (·, 𝑡)∥2∥𝑒𝜂 (·, 𝑡)∥2∥( 𝑓 ∗ 𝜌̄)𝑥 (·)∥∞ ≤

≤ ∥𝑒𝜂 (·, 𝑡)∥2
2∥ 𝑓 (·)∥2∥ 𝜌̄𝑥 (·)∥2, (6.46)

where we combined the H¥olders’ inequality (see Lemma 1.1), the definition of derivative
of a convolution, and the Young’s inequality (see Lemma 1.3). By using the bound (6.46)
into (6.45), we finally get

𝑉𝑡 (𝑡) ≤ (−2𝐷 + ∥ 𝑓 (·)∥2∥ 𝜌̄𝑥 (·)∥2)𝑉 (𝑡). (6.47)

Assuming ∥ 𝜌̄∥2 < 2𝐷/∥ 𝑓 ∥2, by comparison (see Lemma 1.5), we know ∥𝑒𝜂 ∥2
2 (locally)

converges to 0.
Hence, being (6.36a) point-wisely convergent, and (6.36c) locally convergent in

L2 (S), we can study (6.36b) assuming (6.36a) and (6.36c) already converged to 0. This
let us conclude about the local stability of (6.36c) almost everywhere (L2 convergence
implies point-wise convergence almost everywhere), making the theorem proved. ■

Remark 6.6. The error 𝑒, whose dynamics is in (6.36a), monotonically goes to 0 as it is
linear and stable (recalling 𝐾 > 0). In Theorem 6.3, we prove 𝑒𝜂 locally converges to 0
almost everywhere, as we know it goes to 0 in L2 (S). Hence, when 𝑒𝜂 converged to 0,
the dynamics of 𝑒∗ is governed by a linear (spatially distributed) and stable ODE almost
everywhere. This suggests that 𝑒 and 𝑒∗ monotonically decrease to 0 (point-wisely,
and almost everywhere), and hence, it is ensured that, starting from a positive leaders’
density, 𝜌𝐿0 > 0, the system locally converge to the desired solution preserving the strict
positivity of 𝜌𝐿 .

Remark 6.7. When 𝑝 = 1 (full plasticity), or, equivalently Φ𝐹 = 0, the problem simpli-
fies, and we can find parameters’ regions for which global stability of the solution can be
ensured. We refer the reader to Appendix E.1.

110



Chapter 6. Reacting Mixtures of Leaders and Followers

(a) (b)

Figure 6.1: Feasibility plots for a von Mises desired density (𝜇 = 0, 𝑘 = 1), Morse inter-
action kernel (fixed 𝐿𝑎, varying 𝐿𝑟 ), and varying diffusion coefficient 𝐷: (a) maximum
admissible Φ𝐹 , and (b) minimum possible 𝑝, making the problem feasible (existence of
the desired steady-state solution). Parameters: 𝐿𝑎 = 𝜋, 𝛼 = 2, 𝐾𝐹𝐿 = 1, 𝐾𝐿𝐹 = 2.

6.2.4 Numerical validation

Feasibility plots

We considered a population of agents interacting through a Morse interaction kernel
(long-range attraction, short-range repulsion, see (A.7)) with 𝐿𝑎 = 𝜋, 𝛼 = 2, and
we considered 𝐿𝑟 ∈ [0.1𝜋/2, 0.95𝜋/2]. We also varied the diffusion coefficient 𝐷 ∈
[5 · 10−4, 0.2]. We fixed the desired density for the group to be a von Mises distribution
with zero mean and 𝑘 = 1 (see (3.25)).

In this set-up, we graphically represented the maximum admissible Φ𝐹 , and, equiva-
lently, the minimum plasticity to ensure feasibility (i.e., Theorem 6.2 holds). Results are
given in Fig. 6.1a and 6.1b, respectively. The regions where the larger Φ𝐹 (minimum
𝑝) can be considered are the ones in yellow (blue). It is interesting to notice that, as the
diffusion coefficient tend to 0, feasibility is more difficult to be granted (it is associated
to large plasticity values). This can be explained analysing the problem for 𝐷 = 0 (see
App. E.3)
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6.2. One-dimensional setting

(a) 𝑡 = 0 (b) 𝑡 = 5

(c) 𝑡 = 20 (d)

Figure 6.2: Mono-modal regulation: (a), (b), (c) three snapshot of the simulation trial
(respectively, 𝑡 = 0, 𝑡 = 5, 𝑡 = 20), in solid lines the current density, in dashed lines the
steady-state prediction we derived; (d) time evolution of the KL divergence between 𝜌
and 𝜌̄.

Monomodal regulation

Here, we consider a monomodal regulation trial. Specifically, we consider the desired
density to be a von Mises distribution with 𝜇 = 0 and 𝑘 = 1. We assume agents to
interact through a periodic Morse interaction kernel with 𝐿𝑎 = 𝜋, 𝐿𝑟 = 𝜋/4 and 𝛼 = 2,
and 𝐷 = 0.05. We fix Φ𝐹 = 0.5 (𝑝 = 0.5), and 𝑀𝐿

0 = 𝑀𝐹
0 = 0.25, and we assume

initial densities to be constant. As control parameters, we choose 𝐾 = 1, 𝐾𝐹𝐿 = 1, and
𝐾𝐿𝐹 = 2.

Results of the simulation trial are reported in Fig. 6.2. Specifically, three snapshot
of the simulation are presented, together with the time evolution of the KL divergence
between 𝜌 and 𝜌̄ (see (3.23)). Steady-state results are in good accordance with our
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prediction (represented in dashed lines). Moreover, convergence of 𝜌 to 𝜌̄ is achieved in
about 5 time units in accordance with the result of Theorem 6.1 – see (6.12) (we recall
that for this specific trial 𝐾 = 1). We remark that the steady-state value of the leaders’
and followers’ mass are 𝑀𝐿 ≈ 0.16 and 𝑀𝐹 ≈ 0.33, meaning that for each leader there
are two followers; this was predictable, as, at steady-state, the mass ratio of two species
competing in a mass action law is regulated by the ration of the reaction rates 𝐾𝐹𝐿/𝐾𝐿𝐹 ,
which, in this trial, was 1/2.

6.3 Higher-dimensional extension

In this Section, we extend the theoretical framework to periodic domains in higher-
dimensions, Ω = [−𝜋, 𝜋]𝑑 (𝑑 = 2, 3).

The model in (6.1) becomes

𝜌𝐿𝑡 (x, 𝑡) + ∇ ·
[
𝜌𝐿 (x, 𝑡)u(x, 𝑡) + 𝜌𝐿 (x, 𝑡) (f ∗ 𝜌) (x, 𝑡)

]
= 𝐷∇2𝜌𝐿 (x, 𝑡) + 𝑞(x, 𝑡),

(6.48a)

𝜌𝐹𝑡 (x, 𝑡) + ∇ ·
[
𝜌𝐹 (x, 𝑡) (f ∗ 𝜌) (x, 𝑡)

]
= 𝐷∇2𝜌𝐹 (x, 𝑡) − 𝑞(x, 𝑡),

(6.48b)

𝜂𝐹𝑡 (x, 𝑡) + ∇ ·
[
𝜂𝐹 (x, 𝑡) (f ∗ 𝜌) (x, 𝑡)

]
= 𝐷∇2𝜂𝐹 (x, 𝑡), (6.48c)

where f is a 𝑑-dimensional periodic kernel, and 𝜌 = 𝜌𝐿 + 𝜌𝐹 + 𝜂𝐹 . The system is
complemented with periodic boundary conditions and initial conditions similar to those
of (6.1).

Theorem 6.1 holds analogously, fixing

∇ ·
[
𝜌𝐿 (x, 𝑡)u(x, 𝑡)

]
= −𝐾𝑒(x, 𝑡) − ∇ · [𝜌(x, 𝑡) (f ∗ 𝜌) (x, 𝑡)] − 𝐷∇2𝜌(x, 𝑡), (6.49)

as this choice ensure the error system takes the form

𝑒𝑡 (x, 𝑡) = −𝐾 𝑒(x, 𝑡). (6.50)

To uniquely recover u, a vector field, from the scalar relation (6.49), some extra constraints
needs to be fixed as also done in Chapter 3. Specifically, following the steps given in
Section 3.4.3, we fix w := 𝜌𝐿U, and

𝑌 (x, 𝑡) = −𝐾𝑒(x, 𝑡) − ∇ · [𝜌(x, 𝑡) (f ∗ 𝜌) (x, 𝑡)] − 𝐷∇2𝜌(x, 𝑡), (6.51)
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so that we can pose the problem
∇ · w(x, 𝑡) = 𝑌 (x, 𝑡),

∇ × w(x, 𝑡) = 0,
(6.52)

where we added a zero-curl condition to (6.49). Such a problem is analogous to the
Poisson equation ∇2𝜑 = −𝑌 , where we assume w = −∇𝜑. The Poisson problem can
be solved using the Fourier series expansion (see from (3.16) to (3.19) in Chapter 3)
so that 𝜑, and consequently w are recovered. Finally U = w/𝜌𝐿 . Analogously to the
one-dimensional case, the resulting controlled velocity field u is well defined only if 𝜌𝐿

is strictly positive.

Such a constraint can be ensured by appropriately choosing the reacting function 𝑞.
In particular, extending (6.16) to higher dimensions, we get

𝑞(x, 𝑡) = 1
2
∇ ·

[
𝜌𝐿 (x, 𝑡) (x, 𝑡)

]
+ 1

2
∇ · [𝜌∗ (x, 𝑡) (f ∗ 𝜌) (x, 𝑡)] − 𝐷

2
∇2𝜌∗ (x, 𝑡) + 𝑔(x, 𝑡),

(6.53)

where 𝜌∗ = 𝜌𝐿 − 𝜌𝐹 and 𝑔 is the mass action law

𝑔(x, 𝑡) = 𝐾𝐹𝐿𝜌𝐹 (x, 𝑡) − 𝐾𝐿𝐹𝜌𝐿 (x, 𝑡). (6.54)

When extending Theorem 6.2 to higher dimensions, no modifications are needed
until we need to compute the steady-state of 𝜂𝐹 (see (6.26)). Specifically, fixing 𝜂𝐹𝑡 = 0
and 𝜌 = 𝜌̄ in (6.48c), we get

∇ ·
[
𝜂𝐹 (x) (f ∗ 𝜌̄) (x)

]
= 𝐷∇2𝜂𝐹 (x), (6.55)

which can be rewritten as

∇ ·
[
𝜂𝐹 (x) (f ∗ 𝜌̄) (x)

]
= 𝐷∇ ·

[
∇𝜂𝐹 (x)

]
. (6.56)

Equation (6.56) is fulfilled if1

∇𝜂𝐹 (x) = 1
𝐷
𝜂𝐹 (x) (f ∗ 𝜌̄) (x). (6.57)

1This passage becomes a necessary and sufficient condition if we assume to look for solutions such that
∇ ×

[
𝜂𝐹 (f ∗ 𝜌̄)

]
= 0, and ∇ (𝜙 − 𝜓) = 0, where 𝜙 = ∇

[
𝜂̄𝐹 (f𝜌̄)

]
, and 𝜓 = ∇

[
∇ 𝜂̄𝐹

]
.
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Equation (6.57) is a vectorial differential relation involving the partial derivatives of the
scalar unknown 𝜂𝐹 , thus resulting in an ill-posed problem, which can be expanded as

𝜂𝐹𝑥1 (𝑥1, 𝑥2) = 1
𝐷
𝜂𝐹 (𝑥1, 𝑥2) ( 𝑓1 ∗ 𝜌̄) (𝑥1, 𝑥2),

𝜂𝐹𝑥2 (𝑥1, 𝑥2) = 1
𝐷
𝜂𝐹 (𝑥1, 𝑥2) ( 𝑓2 ∗ 𝜌̄) (𝑥1, 𝑥2).

(6.58)

where, without any loss of generality, we fixed 𝑑 = 2, f = [ 𝑓1, 𝑓2], x = [𝑥1, 𝑥2]2. By
solving the first component of (6.58), we get

𝜂𝐹 (𝑥1, 𝑥2) = 𝐶 (𝑥2)ℎ(𝑥1, 𝑥2), (6.59)

where 𝐶 is a function of 𝑥2 coming from the spatial integration with respect to 𝑥1, and

ℎ(𝑥1, 𝑥2) = exp
{

1
𝐷

∫
( 𝑓1 ∗ 𝜌̄) (𝑥1, 𝑥2) d𝑥1

}
. (6.60)

We can now check under which conditions the second component of (6.58) is fulfilled
under the choice of 𝜂𝐹 in (6.59). In so doing, we impose the partial derivative of (6.59)
with respect to 𝑥2 to fulfill the second component of (6.58), that is

𝐶𝑥2 (𝑥2)ℎ(𝑥1, 𝑥2) + 𝐶 (𝑥2)ℎ𝑥2 (𝑥1, 𝑥2) = 𝐶 (𝑥2)ℎ(𝑥1, 𝑥2)
( 𝑓2 ∗ 𝜌̄) (𝑥1, 𝑥2)

𝐷
, (6.61)

which represents a linear ODE for 𝐶. If we fix

𝐶 (𝑥2) = 𝐶 = const., (6.62)

and we further assume to have an isotropic interaction kernel, that is∫
( 𝑓1 ∗ 𝜓) (𝑥1, 𝑥2) d𝑥1 =

∫
( 𝑓2 ∗ 𝜓) (𝑥1, 𝑥2) d𝑥2, (6.63)

for any periodic 𝜓, equation (6.61) remains satisfied3. The value of 𝐶 can be finally

2The case 𝑑 = 3 is a trivial extension.
3By fixing 𝐶 to be constant in (6.61) and computing ℎ𝑥2

ℎ (𝑥1, 𝑥2 )
𝐷

[∫
( 𝑓1 ∗ 𝜌̄) (𝑥1, 𝑥2 ) d𝑥1

]
𝑥2

=
ℎ (𝑥1, 𝑥2 )

𝐷
( 𝑓2 ∗ 𝜌̄) (𝑥1, 𝑥2 ) ,[∫

( 𝑓1 ∗ 𝜌̄) (𝑥1, 𝑥2 ) d𝑥1

]
𝑥2

= ( 𝑓2 ∗ 𝜌̄) (𝑥1, 𝑥2 ) ,

that is fulfilled under the isotropic assumption for the kernel (6.63).
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chosen to let 𝜂𝐹 sums to Φ𝐹 .

The local stability analysis carried out in Theorem 6.3 can be straightforwardly
extended to higher dimensions4. The Theorem condition in higher dimensions takes the
form

𝑑∑︁
𝑖=1

∥ 𝜌̄𝑥𝑖 (·)∥2∥ 𝑓𝑖 (·)∥2 < 2𝐷, (6.64)

linking the interaction kernel, the diffusivity and the desired density to achieve.

Remark 6.8. Our framework smoothly scales to higher-dimensional domains under the
hypothesis of isotropic interaction kernel, which for 𝑑 = 3 reads∫

( 𝑓1 ∗ 𝜓) (𝑥1, 𝑥2, 𝑥3) d𝑥1 =

∫
( 𝑓2 ∗ 𝜓) (𝑥1, 𝑥2𝑥3) d𝑥2 =

∫
( 𝑓3 ∗ 𝜓) (𝑥1, 𝑥2, 𝑥3) d𝑥3,

(6.65)

for any periodic 𝜓. We remark that, all the interaction kernels that have been used
throughout this theses satisfy condition (6.63). Also, the steady-state solution for 𝜂𝐹 is
not uniquely defined in higher dimensions. To ensure its uniqueness, we need to add
extra conditions, that are

∇ ×
[
𝜂𝐹 (x) (f ∗ 𝜌) (x)

]
= 0, (6.66a)

∇ [𝜙(x) − 𝜓(x)] = 0, (6.66b)

4The whole theorem follows the same structure of its one-dimensional counterpart. The time derivative of
the Lyapunov functional in (6.41) can be rewritten as (dropping dependencies for simplicity)

𝑉𝑡 = −2𝐷 ∥∇𝑒𝜂 ∥2
2 −

∫
Ω

(𝑒𝜂 )2 ∇ · ( 𝑓 ∗ 𝜌̄) dx,

using the divergence theorem and vectorial identities. The first term at second member can be bounded using
the Poincaré-Wirtinger inequality (see Remark 1.2), while, for the second one the following bound holds����∫

Ω

(𝑒𝜂 )2 ∇ · ( 𝑓 ∗ 𝜌̄) dx
���� ≤ ∫

Ω

���(𝑒𝜂 )2 ∇ · ( 𝑓 ∗ 𝜌̄)
��� dx = ∥𝑒𝜂𝑒𝜂∇ · ( 𝑓 ∗ 𝜌̄) ∥1 ≤

≤ ∥𝑒𝜂 ∥2
2 ∥∇ · ( 𝑓 ∗ 𝜌̄) ∥∞ ≤ ∥𝑒𝜂 ∥2

2

𝑑∑︁
𝑖=1

∥ ( 𝑓𝑖 ∗ 𝜌̄𝑥𝑖 ) ∥∞ ≤ ∥𝑒𝜂 ∥2
2

𝑑∑︁
𝑖=1

∥ 𝑓𝑖 ∥2 ∥ 𝜌̄𝑥𝑖 ∥2,

where we used the H¥older’s, Minkowsky’s and Young’s inequality. This lead us to the following bound on the
time derivative of the Lyapunov functional

𝑉𝑡 ≤
(
−2𝐷 +

𝑑∑︁
𝑖=1

∥ 𝑓𝑖 ∥2 ∥ 𝜌̄𝑥𝑖 ∥2

)
𝑉.

116



Chapter 6. Reacting Mixtures of Leaders and Followers

(a) 𝑡 = 100 (b) 𝑡 = 100

(c) 𝑡 = 100 (d)

Figure 6.3: 2D Mono-modal regulation: (a) leaders’, (b) reactive followers’, (c) non-
reactive followers’ density at 𝑡 = 100; (d) time evolution of the KL divergence between
𝜌 and 𝜌̄.

where 𝜙 = ∇
[
𝜂𝐹 (f 𝜌̄)

]
, and 𝜓 = ∇

[
∇𝜂𝐹

]
.

6.3.1 Numerical validation

Here we consider a mono-modal regulation scenario similar to the one we consider for
the one-dimensional numerical validation. Specifically, we considered as desired density
a bivariate von Mises distribution with 0 means and unit concentration coefficients – see
(3.26). We assume agents to be characterized by the diffusion coefficient𝐷 = 0.05, and to
interact through a 2D periodic Morse kernel with parameters 𝐿𝑎 = 𝜋, 𝐿𝑟 = 𝜋/4, 𝛼 = 3.2
(no closed form for such a kernel was found – we refer the reader to Appendix A for
more details about its approximation). We fixed Φ𝐹 = 0.2 (𝑝 = 0.8), 𝑀𝐿

0 = 𝑀𝐹
0 = 0.4,

and, initial densities to be constant. As control parameters, we choose 𝐾 = 1, 𝐾𝐹𝐿 = 1,
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and 𝐾𝐿𝐹 = 2.
Results of the simulation trial are reported in Fig. 6.3. In particular, we show the

density profiles of all the populations at the end of the trial, that is 𝑡 = 100, and the time
evolution of the KL divergence. We observe good qualitative accordance between the
one- and two-dimensional trials, both in terms of agents displacement and approach of
𝜌 with respect to 𝜌̄. As for the one-dimensional trial, we remark that convergence of 𝜌
to 𝜌̄ is achieved in almost 5 time units, being 𝐾 = 1 and because of (6.12) – see Fig.
6.3d. Note that convergence of 𝜌𝐿 , 𝜌𝐹 and 𝜂𝐹 to their steady-states profiles is instead
slower. We point out that, at the end of the trial, it results 𝑀𝐿 ≈ 0.26, and 𝑀𝐹 ≈ 0.53.
This is in accordance with the choice of the reaction rates, which predicts the leaders and
followers’ mass to be in a 1/2 ratio.

6.4 Preliminary results about robustness

In this section, we give some preliminary numerical results about how robustness varies
with different levels of plasticity. Our aim is to show that, in accordance with biological
systems, larger levels of plasticity are associated with increased robustness properties.

We considered a one-dimensional set-up similar to that discussed in Section 6.2.4. In
particular, we fixed the desired population density to be the normal von Mises distribution
((3.25), with 𝜅 = 1 and 𝜇 = 0, normalized to 1); interactions among the agents are set
via a periodic Morse interaction with 𝐿𝑎 = 𝜋, 𝐿𝑟 = 𝜋/4 and 𝛼 = 2; furthermore, we
set 𝐾 = 10. In such a set-up we introduce a perturbation on the followers behavior,
both for reactive and non-reactive ones. In particular, we assumed a nominal diffusion
coefficient 𝐷 = 0.02, while the dynamics of followers has been perturbed using the
diffusion 𝐷 = 2𝐷 – see (6.1). In this framework, we considered the initial populations’
densities to be the equilibrium configurations computed in Section 6.2.3, and, starting
from that condition, we assessed how different choices for the degree of plasticity 𝑝

influence the degradation of the performance5. Notice that, we fixed the reacting rates
𝐾𝐿𝐹 and 𝐾𝐹𝐿 so that the steady-state mass of leaders is constant (and equal to 0.2) for
different values of 𝑝. In such a way, the amplitude of the perturbation that we introduce
is constant for each 𝑝.

5For values of 𝑝 that are below the minimum plasticity threshold prescribed by Theorem 6.2 – see remark
6.5 – the steady-state configurations 𝜌̄𝐿 and 𝜌̄𝐹 are not feasible (that is, they are negative in some regions of the
domain). For these cases, we considered as initial configuration of the robustness analysis trial a modification
of those unfeasible densities. Specifically, we translate them upwards until they are non-negative, and we
re-normalize them to a predefined mass.
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(a) 𝑝 = 0.8 (b) 𝑝 = 0.4

(c)

Figure 6.4: Robustness to parametric uncertainty with different degree of plasticity. (a)
Final configuration of the swarm with 𝑝 = 0.8; (b) Final configuration of the swarm with
𝑝 = 0.4; (c) KL divergence (blue) and leaders’ mass (orange) at steady-state (in solid
gray the predicted minimum plasticity ensuring feasibility).

Results of such a robustness analysis are reported in Fig. 6.4 (assuming the steady-
state leaders’ mass is 0.2). In particular, in Fig. 6.4b and 6.4a we show the populations’
densities after 10 time units from the beginning of the numerical trial for the case 𝑝 = 0.8
and 𝑝 = 0.4, respectively. For the case 𝑝 = 0.8, agents are able to find a configuration
in which the control goal remains satisfied, that is 𝜌 = 𝜌d. Such a tendency is consistent
with values of the degree of plasticity such that 𝑝 ≥ 0.6, as it can be noticed from the
aggregated results in Fig. 6.4c. Notice that, for the specific scenario we are considering
the minimum plasticity ensuring feasibility is slightly below 0.6 (solid gray vertical line
in Fig. 6.4c). When 𝑝 goes below the minimum plasticity threshold, we observe a
degradation of the steady-state performance, that decreases as 𝑝 decreases. Note that,
when below the minimum plasticity threshold, as per Theorem 6.2 we are not able to

119



6.5. Discussion

recover positive steady-state densities for leaders and followers (resulting in the absence
of dashed lines in the right panel of Fig. 6.4a).

The aggregated results in Fig. 6.4c show that when above the minimum plasticity
threshold prescribed by Theorem 6.2, performance are independent from the specific
degree of plasticity, as the control goal remains always satisfied. Conversely, performance
start degrading when below the minimum plasticity threshold, proportionally with the
degree of plasticity (the lower, the worse performance become).

6.5 Discussion
We developed a mathematical framework for modeling and understanding behavioral
plasticity. This set-up consists of three PDEs, each one describing the density dynamics
of the different agents’ species we considered, namely, leaders, followers and non-
reactive followers. We considered a density control task, a paradigmatic scenario into
which many real application falls. For such a problem, we considered (𝑖) leaders can
be actively controlled, and, eventually, transformed into followers, (𝑖𝑖) followers can be
transformed into leaders, and (𝑖𝑖𝑖) non-reactive followers only react to the actions of the
other agents.

We phrased the problem at the macroscopic scale, in order to compactly catch large-
scale problems avoiding the curse of dimensionality, and to easily derive analytical
guarantees regarding the solution. Our first main result regards feasibility: we derived
a necessary and sufficient condition for the problem to admits a desirable solution. The
existence of such a solution depends on important parameters of the system, such as the
desired density, the interaction kernel parameters, the diffusivity of the agents, and the
amount of each species in the collective. The second main result consists of a control
algorithm for the leaders, and a reactive mechanism between leaders and followers solving
the density control problem with analytical guarantees of local convergence. We also
remark that our solution lets the designer choose the steady-state leaders-to-followers
ratio.

The goal of our work is two-fold. Firstly, it proposes a simple and effective model
for behavioral plasticity (in domains of arbitrary dimensions), a biological mechanism
underlying many natural phenomena. Then, formulating the problem through the lenses
of a (density) control problem, we offer a viable way to drive new solutions for control
tasks and swarm robotics applications. In particular, we demonstrated behavioral plastic-
ity is unveiling interesting and useful robustness and flexibility properties. Specifically,
we numerically assessed how increased plasticity is associated with increased robustness
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with respect to parametric uncertainty.
In the next Chapter, we consider the problem of experimentally validating techniques

for the control of large-scale multi-agent systems, as, for example the ones that are
discussed so far in the Thesis (developed in the limit of infinite number of agents). We
remark that these kind of experiments are remarkably critical because of their inherent
high resources and time cost. For this reason agile platforms that mitigate this kind of
costs are especially needed in this field. We decided to tackle this problem by developing
a mixed reality platform, where part of the swarm is implemented as differential drive
robots, and the rest is virtualized via software. In such a way, swarms of arbitrary size
can be tested in this hybrid experimental platform.
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7 Mixed Reality Environment
for Agile Swarm Robotics Ex-
periments

In this Chapter we cover part of the material documented in [31]. Many new method-
ologies for the control of large-scale multi-agent systems are based on macroscopic
representations of the emerging system dynamics, in the form of continuum approxima-
tions of large ensembles. These techniques, that are developed in the limit case of an
infinite number of agents, are usually validated only through numerical simulations. In
this paper, we introduce a mixed reality set-up for testing swarm robotics techniques,
focusing on the macroscopic collective motion of robotic swarms. This hybrid apparatus
combines both real differential drive robots and virtual agents to create a heterogeneous
swarm of tunable size. We also assess experimentally the validity of the continuification
control procedure that is developed in Chapter 3. Our study demonstrates the effec-
tiveness of the platform for conducting large-scale swarm robotics experiments, and it
contributes new experimental insights into control algorithms exploiting continuification
approaches.

7.1 Introduction

Several new techniques for the analysis and control of large-scale multi-agent systems
rely on the assumption that the interacting dynamical systems of the ensemble (agents)
are numerous enough to be described in a continuuum framework[26, 29, 30, 66, 67].
Such an assumption paves the way for recasting many traditional microscopic agent-
based formulations, based on large sets of ordinary differential equations (ODEs), into
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smaller sets of partial differential equations (PDEs) for a macroscopic representation
of their collective behavior. For instance, it can be advantageous to study the spatio-
temporal dynamics of a large group of mobile agents in terms of their density, rather than
keeping track of the motion of each of the agents [26, 29, 30, 53, 125]. In so doing, one
can address the curse of dimensionality of microscopic representations by formulating
control algorithms at the scale where the collective behavior emerges [153]. Suitable
applications include, but are not limited to, multi-robot systems [125, 126, 172], traffic
control [198, 199], cell populations [173], and human networks [10].

Recasting these systems into continuum formulations offers new opportunities in
the analysis and design of novel control approaches to tame collective dynamics. A
pressing open challenges is to find agile methods to inform and experimentally validate
the synthesis of control algorithms developed in a continuum framework. Full-scale
experiments about the control of large-scale multi-agent systems have been recently
carried out [137, 138, 139, 140]. However, the majority of the existing control solutions
have been tested only using computer simulations due to practical limitations. In this
paper, we present a novel mixed reality environment where some real mobile robots
interact among themselves and with other virtual agents. We bring settings as that in
[147] and other recent mixed reality platforms [148, 149], to large-scale scenarios. In
so doing, we integrate insights from disability studies [141, 142] and animal behavior
research [143, 144, 145, 146] where digital twins of patients or animals are often utilized
for testing new strategies in virtual reality settings. Our set-up let the user choose
the size of the ensemble to study, avoiding the bottleneck of extreme time cost and
resources of experiments of large-scale systems. Moreover, in our setting, the specific
model for the virtual agents can be chosen by the designer and is not constrained to
a specific commercial robot. The whole apparatus is easy to implement and can be
realized, for example, by adapting other existing facilities such as the Robotarium at
GeorgiaTech [152]. Relevant previous work in the field of swarm robotics includes
the use of augmented reality for providing simple testbed agents, like kilobots, with
augmented sensing capabilities [150, 151].

The rest of the Chapter is organized as follows. In Section 7.2, we describe the
experimental platform. Specifically, in Section 7.2.1 we focus on the mobile robots we
designed, and then, in Section 7.2.2 on the platform itself. In Section 7.3 to demonstrate
the use of the platform. We discuss results and conclusions in Section 7.3.2 and 7.5,
respectively.
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(a) (b)

Figure 7.1: (a) Render of a differential drive robot, and (b) inner view of the robot.

7.2 Experimental mixed reality environment
Here, we detail our experimental apparatus for the design of experiments about the
coordination of hybrid large swarms of real robots and virtual agents. We first present
the mobile robotic agents and their kinematics. Then, we describe the integration of
these robots with the virtual agents in the overall mixed reality platform.

7.2.1 Differential drive robots

We built four differential drive robots, as the one rendered in Fig. 7.1a. These robots fea-
tured a 3D-printed PLA frame (Polylite, Polymaker) printed on a Bambu Lab X1C (CAD
model available on github). The sizes of the robot are such that it can be schematized as
a rectangle 11.5 cm × 9.5 cm. Each robot was equipped with an ESP32 microcontroller,
operating two continuous rotation servo motors (FS90R, Feetech) directly connected to
56 mm wheels. Additionally, an omni-directional wheel was attached at the front-bottom
of the robot. Power was supplied to each robot through an off-the-shelf power bank
(Attom, Ultra Slim 3000mAh). We show the real robot, with sizes and hardware in Fig.
7.1b. In the absence of a load, the motors are able to rotate at approximately 14 rad/s and
provide a torque of 1.5 kg·cm. Taking into account the wheel radius, the maximum linear
speed that can be achieved by the robot is approximately 0.8 m/s (when both wheels are
rotating in the same direction at full speed).

The 𝑖-th differential drive robots is characterized by the following non-holonomic
kinematic behavior:

¤zR
𝑖 = R(𝜃𝑖) uR

𝑖 , (7.1)

for 𝑖 = 1, . . . , 4. In particular, zR
𝑖
= [xR

𝑖
, 𝜃𝑖]𝑇 is the state of the 𝑖-th differential drive
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(a) (b)

Figure 7.2: Experimental platform. (a) A render of the real set-up, with 4 robots moving
in the arena, and (b) a sketch of the platform, assuming virtual agents to be the black dots
and real robots to be concentric circles.

robot, where xR
𝑖
= [𝑥R

𝑖,1, 𝑥
R
𝑖,2]

𝑇 is its position in a Cartesian coordinate framework and
𝜃𝑖 ∈ [−𝜋, 𝜋] its orientation. Moreover,

R(𝜃) =

cos 𝜃𝑖 0
sin 𝜃𝑖 0

0 1

 , (7.2)

and u𝑅
𝑖
= [𝑉𝑖 , 𝜔𝑖]𝑇 is the vector of the control variables, with 𝑉𝑖 being the instantaneous

velocity of the mid-point between the robots’ wheels, and with 𝜔𝑖 being its angular
velocity.

7.2.2 Mixed reality environment

We built the set-up shown in Fig. 7.2a, comprising a set of differential drive robots
moving on the ground and an overhead camera (16MP wide-angle camera – Arducam,
placed at 1m height). The camera was placed so that the robots could move in an area of
approximately 2 m × 2 m. Aruco markers were attached to the robots, so that they could
be easily tracked by the camera and perform their pose estimation. A Python program
using OpenCV was developed to estimate the robots’ pose in each frame. The video feed,
with all the estimated robots’ positions, was given to the central station of the platform,
a Dell Aurora (13𝑡ℎ Gen Intel® i9 13900KF, 64GB of DDR5 RAM NVIDIA® GeForce
RTX™ 4090). Such a machine was also provided with the positions (and eventually
velocities) of a user-defined number of virtual agents. In principle, one can choose the
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Figure 7.3: Control scheme for robot 𝑖. By measuring the overall density of the swarm,
the continuification control inputs can be used to give the robots a desired position and
velocity to track.

specific mathematical model for the virtual agents. Based on the literature about the
control of large-scale mobile agents, a reasonable choice is to select their dynamics as
that of single or double integrator without any kinematic constraint [53, 166]. Using the
available information (robots’ positions and virtual agents’ positions, at least), the central
station was in charge of controlling the hybrid swarm of real and virtual agents, according
to some user-definable algorithm. Such a control algorithm should be chosen so that the
needed information could be estimated by tracking the real robots with a camera, since
robots were not equipped with any specific sensor.

The application of any control strategy consists of (𝑖) updating the positions of
the virtual agents, based on the specific dynamical model that is assumed for them,
and (𝑖𝑖) computing the control inputs for the real robots and sending them through a
TCP client/server communication protocol on the local Wi-Fi. The idea is sketched in
Fig. 7.2b. Since collective motion techniques are typically developed for kinematically
unconstrained agents, a low-level trajectory tracking control is needed for the robots. We
used the input/output feedback linearization technique that is proposed in [200] (Chapter
11.6).

We remark that the set-up we propose is versatile, as it could account for various
constraints that can be chosen by the user, like, for instance, limited sensing and obstacles.

7.3 Validation of the continuification control strategy of
Chapter 3 via the new experimental platform

Next, we experimentally validate the higher-dimensional continuification control strategy
proposed in Section 3.4 to steer the collective behavior of a swarm of robots in the plane.
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In so doing, we also demonstrate the use of our experimental platform for evaluating the
performance of control algorithms. To this aim, we fix 𝑑 = 2, making Ω the periodic
square. For modeling pairwise interactions between the agents, we choose a periodic
soft-core repulsive kernel, based on its non-periodic version

f (x) =


x
∥x∥ e−

∥x∥
𝐿 if ∥x∥ ≠ 0

0 otherwise.
(7.3)

The periodization of the kernel consists in an infinite series extending the non-periodic
kernel in every direction. Since no closed form was found, we approximate it by truncating
the series (see Appendix A for more details). Moreover, we fix 𝐿 = 1.

In what follows, we always refer to a Cartesian coordinate system, like the one
considered for the individual kinematics. For each experimental trial we consider that
agents start on a perfect square lattice, meaning that the initial density is constant and, in
particular, 𝜌(x, 0) = 𝑁/(2𝜋)2. As for the desired density to achieve, we choose the 2D
Von-Mises function in (3.26), which we report here for convenience

𝜌d (x) = 𝑍 exp{k𝑇 c1 (x, 𝜇, 𝜈) + 𝑐2 (x, 𝜇, 𝜇) I2 𝑐
𝑇
2 (x, 𝜈, 𝜈)}

where k = [𝑘1, 𝑘2]𝑇 is the vector of the concentration coefficients, 𝜇 and 𝜈 are the
means along the two directions, c1 (x, 𝑎, 𝑏) = [cos(𝑥1 −𝑎), cos(𝑥2 − 𝑏)] and c2 (x, 𝑎, 𝑏) =
[cos(𝑥1 − 𝑎), sin(𝑥2 − 𝑏)] (with 𝑎, 𝑏 ∈ Ω), where 𝑥1 and 𝑥2 are the components of x
in the Cartesian coordinate system, and I2 is the second order identity matrix. 𝑍 is a
normalization coefficient, to allow 𝜌d to sum to the total number of agents 𝑁 . To assess
the performance in different scenarios, we also take into account the case where the
desired density is multimodal, that is the combination of several densities like (3.26).
To address tracking scenarios as well, we study the case where the means, 𝜇 and 𝜈,
in (3.26) are time varying. We remark that the scenarios we consider mimic more
classical microscopic problems of spatial organization. For instance, density regulation
to Gaussian-like profiles can be seen as rendez-vous problems [201], while tracking cases
as formation control ones [202].

The overall control scheme for the hybrid swarm is shown in Fig. 7.3. Specifically,
while virtual agents’ positions can be updated purely using the technique described in
Section 3.4, for the differential drive robots, that are kinematically constrained (see Sec-
tion 7.2.1), such a method needs to be integrated with an ad-hoc controller for tracking
problems. As previously mentioned, we used the input/output feedback linearization
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(a) (b)

(c) (d)

Figure 7.4: Monomodal regulation. (a) Desired density, (b) steady-state configuration of
the swarm, (c) percentage error in time, (d) KL divergence in time.

technique in [200] (Chapter 11.6). The integration is performed by using the continuifi-
cation method to compute the desired position and velocity of the robot, that is then
tracked with its embedded controller. In the case where only real robots are present, the
blocks regarding virtual agents in the scheme in Fig. 7.3 shall be omitted. To adapt the
assumption on the periodicity of the domain to the experiments and avoid real robots to
try to cross the domain’s boundaries, we defined a fictitious periodic extended domain
(double sized with respect to the effective arena where robots move). The arena where
agents move is the inner part of such an extended domain. To avoid agents going out of
the arena (that is the inner part of the domain), the desired density is set as the actual one
in the inner part of the domain, and is then extended to be almost zero elsewhere (i.e., in
the arena fictitious extension).

We characterize the experiments recording ∥𝑒∥2 in time. Specifically, the perfor-
mance of each trial is assessed in terms of the percentage error in (3.22) Trials are also
characterized using the Kullback-Leibler (KL) divergence (see (3.23)), as often done for
density control problems [170].

For each trial, we considered a sample of 𝑁 = 100 agents (96 virtual agents and 4
real robots), and we discretized (3.1) (modeling the motion of the virtual agents and the
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(a) (b)

(c) (d)

Figure 7.5: Multimodal regulation. (a) Desired density, (b) steady-state configuration of
the swarm, (c) percentage error in time, (d) KL divergence in time.

desired positions for the robots) using forward Euler with a non-dimensional time step
Δ𝑡 = 0.01. This corresponds to the camera frame rate of 20 frames per second (FPS) in the
experiments, at which the control algorithm is running. Thus, the unit non-dimensional
time in any of our graphs corresponds to 5 s. The spatial domain is discretized into a
regular mesh of 200×200 cells. We remark that virtual agents are indeed not constrained
to move on such a mesh, and that it is only used for defining functions such as the desired
and effective density of the swarm. We also remark that spatial measures are adapted to
consider that the region where robots are moving coincides with the definition of Ω.

7.3.1 Experimental trials

Here, we detail our experiments, whose videos are available on github.
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Monomodal regulation We want the hybrid swarm to start from an initial constant
density and aggregate towards the von Mises function that is depicted in Fig. 7.4a,
which is characterized by 𝜇 = 𝜈 = 0, and 𝜅1 = 𝜅2 = 1.5 (see (3.26)). Such a desired
configuration consists in a clustered formation about the origin of Ω. The final formation
that is achieved by the swarm is reported in Fig. 7.4b, while the time evolution of 𝐸̄ is
shown in Fig. 7.4c. We record a steady-state value of 𝐸̄ , that is the residual percentage
L2 error, of approximately 2%. In Fig. 7.4d, we report the time evolution of the KL
divergece.

Multimodal regulation We consider the swarm to start from an initial constant density
and aggregate towards the combination of four von Mises functions as the one in (3.26)
(see Fig. 7.5a for a graphical representation). The concentration coefficients of all
the modes is set to 2, and the mean values are 𝜇1 = 𝜇2 = −𝜋/2, 𝜇3 = 𝜇4 = 𝜋/2,
𝜈1 = 𝜈2 = 𝜋/2, and 𝜈3 = 𝜈4 = 𝜋/2. This desired density consists of four clusters of
agents symmetrically displaced around the origin. The final formation is reported in Fig.
7.5b, while the time evolution of 𝐸̄ is shown in Fig. 7.5c. The final value of 𝐸̄ is below
30%. In Fig. 7.5d we show the time evolution of the KL divergence.

Monomodal tracking Here, we focus on a monomodal tracking scenario, where the
desired density is a 2D von Mises function, whose means are time varying, see (3.26).
Specifically, we consider 𝜇(𝑡) and 𝜈(𝑡) behaving as in Fig. 7.6a, while the concentration
coefficients are kept constant and equal to 1. Such a desired density is centered at the
origin for 𝑡 ≤ 1. Then, it starts moving at constant velocity towards a side of the domain
and then on the circle of radius 𝜋/2. We report the results of the trial in Fig. 7.6b,
where the evolution of 𝐸̄ is shown. Specifically, its steady-state value is below 50%. For
brevity, we do not report the KL divergence in time, which remains below 0.25.

Multimodal tracking Here, we consider a multimodal tracking case, where two von
Mises functions with constant concentration coefficients of 2.2 orbitate on the circle of
radius 2𝜋/3, after remaining still at two sides of the domain for 𝑡 ≤ 1. Specifically, 𝜇1 (𝑡),
𝜈1 (𝑡) and 𝜇2 (𝑡), 𝜈2 (𝑡), the means of the two von Mises functions, evolve as in Fig. 7.6c.
Such a desired behavior consists of two clusters of agents orbiting on a circle. Results
are reported in Fig. 7.6d, where the time evolution 𝐸̄ is also shown. After an initial
transient, 𝐸̄ settles to approximately 50%. For brevity, we omit the KL divergence in
time, which remains below 0.3.
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(a) (b)

(c) (d)

Figure 7.6: Tracking experiments. (a) Time evolution of the means of the monomodal
time variant desired density to track, (b) percentage error in time during the monomodal
tracking trial, (c) time evolution of the means of the two modes of the desired von Mises
functions in the multimodal tracking trial (first mode blue and orange, second mode
yellow and purple), and (d) percentage error in time during the multimodal tracking trial.

7.3.2 Results and Discussion

We considered a hybrid swarm of 4 differential drive robots and 96 virtual agents,
interacting through a repulsive kernel. Assuming the group to start on a perfect square
lattice (intial constant density), we tasked the swarm to aggregate according to four
different desired densities, under a new 2D continuification control action. Specifically,
we presented a monomodal and multimodal regulation case, where the means of the von
Mises functions to achieve are time invariant, and a monomodal and multimodal tracking
case, where, instead, the means of the von Mises functions to achieve are time variant.

We characterized the performance of each trial using the time evolution of the
normalized L2 error, namely 𝐸̄ . Although the correct formation has been attained in each
of the trials, we obtained our best results in the regulations scenarios (monomodal and
multimodal), where the steady-state residual percentage error went below 10% and 30%
respectively (Fig.s 7.4 and 7.5). Concerning the tracking cases, instead, performance
was less remarkable, with 𝐸̄ being around 50%, in both the monomodal and multimodal
case (see Fig. 7.6).
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Although the prescribed formation was always attained (see Figs. 7.4 and 7.5 and
available videos for the tracking cases), the asymptotic convergence that is prescribed
by the theory (see Section 3.4) was not accomplished. This is due to two main factors.
First, we adapted the theoretical framework to experiments to cope with the periodicity
assumption about the domain and with the constrained kinematic of the differential
robots. Second, the inherent uncertainties and noise of the experimental set-up need
also to be considered. Note that, another source of performance degradation is the finite
size of the swarm. Specifically, our convergence guarantees hold in the limiting case
of infinite agents. Indeed, should we numerically integrate (3.3), assuming an infinite
number of agents, we would be able to reduce ∥𝑒𝐹 ∥2

2 to 0.

7.4 Preliminary results about the experimental valida-
tion of the leader-follower framework of Chapter 5

In this section, we show some preliminary results about the experimental validation of
the leader-follower density control problem that is discussed in Chapter 5.

We decided to perform such an experimental validation exploiting the Robotarium
facilities [152, 203]. This choice is driven by two main factors: (𝑖) the Robotarium
provides up to 20 differential drive robots, which is consistently more than the ones we
have in our in-house platform; (𝑖𝑖) in this way, we can demonstrate the versatility of
the mixed-reality platform we propose, as it can be easily implemented in open-source
facility as Robotarium.

Within the Robotarium, 20 differential drive robots with a radius of around 10 cm
(GRITSBot) are able to move in a 3.2×2 m arena. Robots have a maximum linear speed
of 20 cm/s, and a maximum rotational speed of 3.6 rad/s. The whole set-up in equivalent
to that depicted in Fig. 7.2, and, as in our set-up, robots have an embedded controller so
that they can be treated as single/double integrators.

We considered a discrete scenario similar to that discussed in Section 5.8, but as-
suming the domain is two-dimensional. We chose to have 𝑁𝐿 = 20 differential drive
robots as leaders, and 𝑁𝐹 = 80 virtual followers. Followers are two-dimensional ran-
dom walkers that are repelled by leaders; leaders are single integrators whose control
action is computed as in Section 5.9, and then discretized via a spatial sampling, that is
u𝑖 (𝑡) = U(x𝑖 , 𝑡) – the system dynamics is that in (5.82), but extended to two-dimensional
domains. To adapt the assumption on the periodicity of the domain to Robotarium ex-
periments, we defined a smaller domain inside of the arena and scaled robots’ positions
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7.5. Discussion

(a) 𝑡 = 0 (b) 𝑡 = 𝑡f

Figure 7.7: A mixed reality implementation in Robotarium of the leader-follower problem
discussed in Section 5: (a) initial and (b) final condition. Virtual followers are represented
as black dots. The black circle highlight the region where the desired density reaches
almost 0.

with respect to this fictitious domain. As for the followers, they are allowed to cross
the boundaries, being them virtual simulated agents. Leaders start equally spaced on a
lattice, while followers’ initial positions are randomly drawn from the uniform distribu-
tion. Densities are estimated from leaders and followers position with an ad-hoc kernel
estimation method. As desired followers’ distribution, we chose the Von Mises density
in (3.26) with 𝑘1 = 𝑘2 = 0.3.

Results of the experimental trial are reported in Fig. 7.7, where the initial and final
snapshot of the experiment are shown. It is possible to notice that virtual followers are
almost all contained in the circular region at the origin of the domain (the desired density
is almost 0 outside otf that region)

7.5 Discussion
We developed a new mixed reality, flexible, experimental environment for large-scale
swarm robotics experiments with relatively small time and resources demand, and we
presented the extension to higher dimensions of the continuification-based control strat-
egy proposed in [29]. Our approach leveraged hybrid swarms of differential drive robots
and virtual agents, making the size of the swarm easily scalable by the user. We demon-
strated the applicability and effectiveness of our set-up for the experimental validation of
the continuification-based control of swarming robots in the plane.

When experimentally implementing a macroscopic control technique with the as-
sumption of an infinite number of agents, we reported a performance degradation, even
if convergence is theoretically ensured. This is due to both implementation problems
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Chapter 7. Mixed Reality Environment for Agile Swarm Robotics Experiments

and theoretical drawbacks of the strategy. In particular, performance degradation is due
to (𝑖) the experimental set-up, (𝑖𝑖) the necessary adaptation of the control strategy to the
kinematic constraints of the real robots and the periodicity of the domain, and (𝑖𝑖𝑖) the
inherent approximation introduced by the continuum hypothesis. Current work seeks to
build more differential drive robots to asses how the ratio between real robots and virtual
agents influence the effectiveness of the platform, and rephrase the theoretical framework
to reduce the number of adaptations to go from theory and simulations to reality.
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8 Conclusions

Finding scalable control strategies for large-scale multi-agent systems is crucial to tackle
many open problems coming from contemporary applications. Large swarms of simple
robots collaboratively solving a complex task, autonomous vehicles smoothing traffic
waves, and regulating the concentrations of engineered microbial consortia in synthetic
biology are just a few relevant examples. All these applications live at different de-
scriptions scales for what concerns control problems. In fact, control goals are typically
defined at the level of the emerging collective behavior, but control inputs can solely be
exerted at the microscopic individual level. In this Thesis, we propose a novel control
framework which naturally exploits the multi-scale nature of this kind of systems.

In Chapter 2, we analyzed what, to the best of our knowledge, represents the relevant
Literature regarding the subjects related to this Thesis. In particular, our overview
highlighted some relevant gaps, which this Thesis aims to fill. Specifically, we remark
that: (𝑖) the applicability of the vast majority of existing techniques performing control
design at the macroscopic level is strongly limited by the absence of methods to link
macroscopic control actions and deployable control inputs; (𝑖𝑖) contributions regarding
the analytical treatment of leader-follower scenarios at the macroscopic level are scarce,
and it may be crucial to delve into this field so to guide the control design process in this
context, for instance, understanding the needed leaders-to-followers ratio and leaders’
minimal sensing and actuation capabilities; (𝑖𝑖𝑖) we are currently missing platforms for
the agile experimental testing of control techniques for large-scale complex systems,
hence making numerical simulations the only viable options for validation.

In Chapter 3, we developed a systematic continuification pipeline to solve density
control problems regarding interacting nonlinear agents moving in periodic domains
of arbitrary size. Such a control paradigm consists of three subsequent steps. After
deriving a macroscopic continuum formulation for the group behavior, a macroscopic
control action is developed and analytically proved to be effective. Such a control action
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is finally discretized onto the agents dynamics in the form of deployable control inputs.
Performing control design at the macroscopic level has several advantages. Mainly,
it allows to recast the system dynamics into a more compact formulation under the
hypothesis of having a collective of infinite size, and, thus, effectively facing the curse
of dimensionality of large-scale problems. Relying on this more amenable formulation
allows to prove the convergence of the developed strategy more easily

The effectiveness of control solutions exploiting macroscopic descriptions of the
ensemble dynamics typically relies on unrealistic assumptions such as unlimited sensing
capabilities and absence of perturbations. In Chapter 4, we analyzed how relaxing such
hypotheses affects the stability properties of our control methodology. We discovered
local and bounded convergence can still be granted, demonstrating the robustness of our
continuification strategy.

In Chapter 5, we extended our control framework to scenarios in which control can
only be exerted through a subset of the agents in the group. Within this leader-follower
scenario, we derived necessary and sufficient conditions assessing the feasibility of the
problem. Such a result allows to quantify the leaders-to-followers ratio, the leaders’
sensing capabilities, and the followers noisiness that makes a density control problem
solvable. Then, two possible control strategies are presented, a feed-forward scheme and a
reference-governor, both proved to ensure global convergence under suitable hypotheses.

This leader-follower paradigm has been readily expanded to model behavioral plas-
ticity phenomena in Chapter 6. This biological mechanism assumes to have a subset of
the agents in the group to be able to switch roles while solving a task in a collaborative
manner. Our model and control solution demonstrate that the biological idea of plastic-
ity can inform and inspire the development of future control techniques with enhanced
flexibility and robustness properties.

Finally, in Chapter 7, we discussed a robotic platform we developed for the agile
experimental testing of control solutions for large-scale problems and swarm robotics.
This platform lives in a mixed reality context, leveraging some real differential drive
robots and an arbitrary number of virtual robotic agents. This set-up allows to create
swarms of arbitrary size avoiding the bottleneck of the extreme time and resources’ costs
of full scale experiments. The usability of our platform has been assessed by performing
several experiments regarding our continuification control strategies.
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Chapter 8. Conclusions

8.1 Limitations and Future Work
The work in this Thesis does not come without limitations. Our theoretical results
and proofs of convergence hold at the macroscopic scale, where the assumption of
having groups of infinite size is made. As demonstrated in numerical and experimental
trials, when implemented on swarms of finite size, our control methodologies still work
in a satisfactory way. Nevertheless, the extent to which performance degrades in these
discrete and microscopic scenarios has not been assessed. We acknowledge that analytical
guarantees of convergence from the macroscopic setting to its microscopic counterpart
are still missing. Such guarantees could be explored using classical works about two-scale
convergence [181] and asymptotic formal analysis [182]

Also, we always rely on the kinematic assumption for modeling the behavior of the
agents, resulting in first order dynamical models and, moreover, agents’ interactions are
always assumed to take place in an all-to-all fashion. Although the intensity of the
interactions decays with the distance between the agents as in proximity networks, the
possibility of topological interactions taking place through a complex network structure
has not been assessed. The extension of the proposed mathematical framework to second
order models accounting for conservation of momentum and energy are the subject of
ongoing research, together with the inclusion of graphons to account for topological
interactions.

Finally, our mixed reality platform for swarm robotics experiments offers an in-
termediate level of abstraction between simulations and full-scale experiments, whose
importance cannot be overlooked.
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Appendix A

Interaction kernel periodization

Periodic interaction kernels f are obtained from the periodization of standard non-periodic
kernels f̂,

f (x) =
∑︁

k∈Z𝑑

f̂ (x + 2k𝜋) (A.1)

where k is a multi-index and k is its related row vector.

One dimensional kernel periodization
When 𝑑 = 1, some closed form for the periodic kernels can be found. Here we provide
examples for the repuslive and Morse kernels.

Repulsive kernel The non-periodic repulsive kernel is in the form

𝑓 (𝑥) = sgn(𝑥)𝑒−
|𝑥 |
𝐿 . (A.2)

Note that we utilize a length-scale 𝐿 while fixing the domain to [−𝜋, 𝜋]. Periodization
leads to

𝑓 (𝑥) =
∞∑︁

𝑘=−∞
sgn(𝑥 + 2𝑘𝜋)𝑒−

|𝑥+2𝑘𝜋 |
𝐿 . (A.3)

By separating the infinite series into two other infinite series based on the sign of 𝑥 +2𝑘𝜋
and computing each of these series individually leads to

𝑓 (𝑥) = 1
𝑒

2𝜋
𝐿 − 1

sgn(𝑥)
[
𝑒

2𝜋−|𝑥 |
𝐿 − 𝑒

|𝑥 |
𝐿

]
. (A.4)
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Morse kernel The non periodic Morse kernel is an attractive-repulsive kernel in the
form

𝑓 (𝑥) = sgn(𝑥)
[

1
𝐿𝑟

e−
|𝑥 |
𝐿𝑟 − 𝛼 1

𝐿𝑎
e−

|𝑥 |
𝐿𝑎

]
=

1
𝐿𝑟

𝑓𝑟 (𝑧) −
𝛼

𝐿𝑎
𝑓𝑎 (𝑧), (A.5)

where we fixed

𝑓𝑖 (𝑧) = sgn(𝑥)e−
|𝑥 |
𝐿𝑖 . (A.6)

Following the same steps proposed for the repulsive kernel, we recover the periodic
Morse kernel

𝑓 (𝑥) = 1
𝐿𝑟

𝑓𝑟 (𝑧) −
𝛼

𝐿𝑎
𝑓𝑎 (𝑧), (A.7)

with

𝑓𝑖 (𝑧) =
1

e
2𝜋
𝐿𝑖 − 1

sgn(𝑧)
[
e

2𝜋−|𝑧 |
𝐿𝑖 − e

|𝑧 |
𝐿𝑖

]
. (A.8)

Higher dimensional kernel periodization
When 𝑑 > 1 no closed forms for the periodc kernels has been found. Hence, when
needed, they are approximated truncating the infinite series in (A.1). For instance, if
𝑑 = 2, and x = [𝑥1, 𝑥2], we have

f (𝑥1, 𝑥1) ≈
𝑀∑︁

𝑘1 ,𝑘2=−𝑀
f̂ (𝑥1 + 2𝑘1𝜋, 𝑥2 + 2𝑘2𝜋), (A.9)

where 𝑘1 and 𝑘2 are the components of k, and 𝑀 is the truncation order.
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Appendix B

Deconvolution

Repulsive kernel Given the repulsive kernel (5.3) and a density function 𝜌 : S → R≥0

𝜙(𝑥) = ( 𝑓 ∗ 𝜌) (𝑥) = 1
e 2𝜋

𝐿 − 1

[
e

2𝜋−𝑥
𝐿

∫ 𝑥

−𝜋
e

𝑦

𝐿 𝜌(𝑦) d𝑦 − e
𝑥
𝐿

∫ 𝑥

−𝜋
e−

𝑦

𝐿 𝜌(𝑦) d𝑦

− e
2𝜋+𝑥
𝐿

∫ 𝜋

𝑥

e−
𝑦

𝐿 𝜌(𝑦) d𝑦+e−
𝑥
𝐿

∫ 𝜋

𝑥

e
𝑦

𝐿 𝜌(𝑦) d𝑦
]
. (B.1)

Differentiating twice with respect to the space variable yields

𝜙𝑥𝑥 =
𝜙

𝐿2 + 2𝜌𝑥 . (B.2)

Thus, by integration, we can retrieve 𝜌 as follows:

𝜌(𝑥) = 1
2

∫ (
𝜙𝑥𝑥 −

𝜙

𝐿2

)
d𝑥 + 𝐵, (B.3)

where 𝐵 is an arbitrary constant.
Notice that the deconvolution operation can be performed also for more complex

periodic interaction kernels, which are not considered in this work. For instance, we
refer the reader to [98] for the case of Morse interactions.
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Appendix C

Some more theoretical results
regarding Chapter 5

C.1 Feasibility analysis with followers-followers inter-
actions

Assume the system dynamics can be described by (5.1a) and the modified followers
equation given by

𝜌𝐹𝑡 (𝑥, 𝑡) +
[
𝜌𝐹 (𝑥, 𝑡)

(
𝑣𝐹𝐹 (𝑥, 𝑡) + 𝑣𝐹𝐿 (𝑥, 𝑡)

)]
𝑥
= 𝐷𝜌𝐹𝑥𝑥 (𝑥, 𝑡), (C.1)

with 𝑣𝐹𝐹 (𝑥, 𝑡) = ( 𝑓 𝐹 ∗𝜌𝐹) (𝑥, 𝑡) modeling follower-follower interactions through the odd
periodic kernel 𝑓 𝐹 . Notice that 𝑓 𝐹 can model spatial behaviors that are also different
from the one embedded in 𝑓 . In particular, it can describe pure repulsion or attraction,
and repulsion (attraction) at long range and attraction (repulsion) at short range. The
procedure described in Section 5.4 can be easily adapted to this modified scenario. In
particular, given a desired followers’ density 𝜌̄𝐹 (𝑥) (such that 𝜌̄𝐹 (𝑥) ≠ 0 for all 𝑥 ∈ S),
we can compute the velocity field 𝑣̄𝐿𝐹 (𝑥) ensuring 𝜌̄𝐹 (𝑥) is a solution of (C.1), that is,

𝑣̄𝐿𝐹 (𝑥) = 𝐷𝜌̄𝐹𝑥 (𝑥) − 𝜌̄𝐹 (𝑥)𝑣̄𝐹𝐹 (𝑥) + 𝐴
𝜌̄𝐹 (𝑥) , (C.2)

with 𝑣̄𝐹𝐹 = ( 𝑓 𝐹 ∗ 𝜌̄𝐹) and 𝐴 being an integration constant. The integration constant 𝐴
is not free to choose, as similarly to (5.12), the Fubini’s theorem for convolutions needs
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C.1. Feasibility analysis with followers-followers interactions

(a) (b)

Figure C.1: Feasibility plots: 𝑀𝐿 for fixed 𝐿 and (a) repulsive follower-follower interac-
tion, (b) Morse follower-follower interaction. In red we show the curve indicating when
𝑀𝐿 becomes greater than 1. In dashed black, we report the feasibility threshold for the
analogous case in Fig. 5.1a (no follower-follower interaction).

to be satisfied. Specifically, exploiting that∫
S
𝑣̄𝐹𝐹 (𝑥) d𝑥 = 0 (C.3)

by construction (because of the Fubini’s theorem for convolutions with an odd kernel), it
needs to be 𝐴 = 0, making

𝑣̄𝐿𝐹 (𝑥) = 𝐷𝜌̄𝐹𝑥 (𝑥)
𝜌̄𝐹 (𝑥) − 𝑣̄𝐹𝐹 (𝑥). (C.4)

Then, by decovolution, we recover 𝜌̄𝐿 as in (5.15). Then, Theorem (5.1) still holds, but
with a modified ℎ(𝑥), that is

ℎ(𝑥) =
−𝐷2 𝑔1 (𝑥) + 𝐷

2𝐿2 𝑔2 (𝑥) − 𝐷𝐶

4𝜋𝐿2 + 𝑣̂𝐹𝐹
𝑥 (𝑥 )

2 − 𝐻 (𝑥 )
2𝐿2 + 𝐹

4𝜋𝐿2

1
2𝜋 + 𝑣̂𝐹𝐹

𝑥 (𝑥 )
2 − 𝐻 (𝑥 )

2𝐿2 + 𝐹

4𝜋𝐿2

, (C.5)

with 𝑔1, 𝑔2 and 𝐶 defined as in Section 5.4 and

𝑣̂𝐹𝐹 (𝑥) = ( 𝑓 𝐹 ∗ 𝜌̂𝐹) (𝑥) (C.6)

𝐻 (𝑥) =
∫

𝑣̂𝐹𝐹 (𝑥) d𝑥 (C.7)

𝐹 =

∫
S
𝐻 (𝑥) d𝑥. (C.8)
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Appendix C. Some more theoretical results regarding Chapter 5

Example

Using the same set-up of Section 5.4.1, we consider the case of having follower-follower
interactions. Specifically we fix 𝐿 = 𝜋 for 𝑣𝐹𝐿 and we consider the follower-followers
kernel to be (𝑖) the repulsive one in (3.24) with characteristic length 𝐿𝐹 = 𝜋, and (𝑖𝑖)
the periodic Morse kernel in (A.7) with 𝐿𝑎 = 𝐿𝐹𝑎 = 𝜋, 𝐿𝑟 = 𝐿𝐹𝑟 = 𝜋/6 and 𝛼 = 1
(modelling long-range attraction and short range repulsion). We report the feasibility
plots in Fig. C.1. For the sake of comparison, in both the scenarios we see an increase in
the area of the feasibility region (𝑀𝐿 < 1), with respect to the analogous scenario with
non interacting followers (see Fig. 5.1a). Such an increase is remarkably bigger when
followers interact through a Morse kernel, underlying a flocking mechanism.

C.2 Leader-follower density control with unfeasible de-
sired densities

When the followers’ desired density 𝜌̄𝐹 , together with the the characteristic parameters
(𝐿, 𝐷), are such that the problem is unfeasible, it means there is not a leaders’ desired
density 𝜌̄𝐿 fulfilling Definition 5.1. In such a scenario, we can choose 𝐵 in (5.15)
according to

𝐵 = arg min
𝐵

∫
S
𝜌̄𝐿 (𝑥) d𝑥

s.t. 𝜌̄𝐿 (𝑥) ≥ 0. (C.9)

Such a choice of 𝐵 consists in a leaders’ desired density that is positive, sums to the
smallest possible mass 𝑀 > 𝑀𝐿 , and implies min[ 𝜌̄𝐿] = 0. Then, we can normalize 𝜌̄𝐿

so that it sums to 𝑀𝐿 , that is

𝜌̃𝐿 (𝑥) = 𝑍 𝜌̄𝐿 (𝑥), (C.10)

with

𝑍 =
𝑀𝐿∫

S 𝜌̄
𝐿 (𝑥) d𝑥

∈ (0, 1). (C.11)
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C.2. Leader-follower density control with unfeasible desired densities

The resulting velocity field that can be exerted by 𝜌̃𝐿 is a scaled version of 𝑣̄𝐹𝐿 , that is

𝑣̃𝐹𝐿 (𝑥) = ( 𝑓 ∗ 𝜌̃𝐿) (𝑥) = 𝑍 ( 𝑓 ∗ 𝜌̄𝐿) (𝑥) = 𝑍 𝑣̄𝐹𝐿 (𝑥). (C.12)

We can still use the control scheme proposed in Chapter 5, assuming leaders can only
displace such that 𝑣̃𝐹𝐿 is exerted, proving bounded convergence.

Remark C.1. In such a scenario, the reference-governor scheme described in Chapter
5 cannot be implemented as the choice of 𝛼 in (5.76) will always return 0 because
min[ 𝜌̄𝐿] = 0.

Theorem C.1 (Bounded convergence for non-feasible scenarios). When the feasibility
condition is not fulfilled, and if ∥𝑔1∥∞ ≤ 2/𝑍 and 𝜌̄𝐹𝑥𝑥 ∈ 𝐿2, 𝜌𝐹 converges towards 𝜌̄
with a bounded error.

Proof. When we plug (C.12) into (5.1b), we obtain the following error dynamics:

𝑒𝐹𝑡 (𝑥, 𝑡) = 𝐷𝑒𝐹𝑥𝑥 (𝑥, 𝑡) − 𝑍𝐷
[
𝑒𝐹 (𝑥, 𝑡) 𝜌̄

𝐹
𝑥 (𝑥)
𝜌̄𝐹 (𝑥)

]
𝑥

+ 𝐷 (𝑍 − 1) 𝜌̄𝐹𝑥𝑥 (𝑥), (C.13)

with its own initial and periodic boundary conditions. Let us consider the Lyapunov
functional ∥𝑒𝐹 ∥2

2. We get

(
∥𝑒𝐹 (𝑥, 𝑡)∥2

2

)
𝑡
= 2

∫
S
𝑒𝐹 (𝑥, 𝑡)𝑒𝐹𝑡 (𝑥, 𝑡) d𝑥 = 2𝐷

∫
S
𝑒𝐹 (𝑥, 𝑡)𝑒𝐹𝑥𝑥 (𝑥, 𝑡) d𝑥

− 2𝑍𝐷
∫
S
𝑒𝐹 (𝑥, 𝑡)

[
𝑒𝐹 (𝑥, 𝑡) 𝜌̄

𝐹
𝑥 (𝑥, 𝑡)
𝜌̄𝐹 (𝑥)

]
𝑥

d𝑥 + 2𝐷 (𝑍 − 1)
∫
S
𝑒𝐹 (𝑥, 𝑡) 𝜌̄𝐹𝑥𝑥 (𝑥) d𝑥,

(C.14)

that, by several integration by parts can be rewritten as(
∥𝑒𝐹 (𝑥, 𝑡)∥2

2

)
𝑡
= −2𝐷∥𝑒𝐹𝑥 (·, 𝑡)∥2

2 − 𝑍𝐷
∫
S

(
𝑒𝐹 (𝑥, 𝑡)

)2
𝑔1 (𝑥) d𝑥

+ 2𝐷 (𝑍 − 1)
∫
S
𝑒𝐹 (𝑥, 𝑡) 𝜌̄𝐹𝑥𝑥 (𝑥) d𝑥, (C.15)

Because of the H¥older’s inequality, we can establish the bound����∫
S
𝑒𝐹 (𝑥, 𝑡) 𝜌̄𝐹𝑥𝑥 (𝑥) d𝑥

���� ≤ ∫
S

��𝑒𝐹 (𝑥, 𝑡) 𝜌̄𝐹𝑥𝑥 (𝑥)�� d𝑥 =


𝑒𝐹 (·, 𝑡) 𝜌̄𝐹𝑥𝑥 (𝑥)

1 ≤

≤


𝑒𝐹 (·, 𝑡)

2



𝜌̄𝐹𝑥𝑥 (𝑥)

2 . (C.16)
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Using (C.16), the Poincaré-Wirtinger’s inequality (see Lemma 1.4) and the H¥older’s
inequality (see Lemma 1.1), we get(
∥𝑒𝐹 (𝑥, 𝑡)∥2

2

)
𝑡
≤ 𝐷 (−2 + 𝑍 ∥𝑔1 (𝑥)∥∞) ∥𝑒𝐹 (·, 𝑡)∥2

2 + 2𝐷 |𝑍 − 1|∥ 𝜌̄𝐹𝑥𝑥 (𝑥)∥2∥𝑒𝐹 (·, 𝑡)∥∥2.

(C.17)

Imposing 𝜂 = ∥𝑒𝐹 ∥2
2, we can equivalently rewrite

𝜂𝑡 ≤ −𝑎𝜂 + 𝑏√𝜂, (C.18)

where

𝑎 = 𝐷 (−2 + 𝑍 ∥𝑔1 (𝑥)∥∞) , (C.19)

𝑏 = 2𝐷 |𝑍 − 1|∥ 𝜌̄𝐹𝑥𝑥 (𝑥)∥2. (C.20)

Under the theorem hypothesis, we know that 𝑎 ≥ 0. Then, using the comparison lemma
(see Lemma 1.5), bounded convergence is proved, as the bounding system has a globally
asymptotically stable equilibrium point in 𝑏2/𝑎2. ■
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Appendix D

Numerical scheme for the in-
tegration of continuified prob-
lems

To integrate (3.12), representing the controlled model in the limit of infinite agents, we
use a finite volume scheme, which naturally accounts for conservation laws [204]. We
divide the domainΩ into 𝑁𝐶 cells C𝑖 (𝑖 = 1, . . . , 𝑁𝐶 ) of uniform volumeΔx, and consider
the average value of the density at time 𝑡𝑛

𝑄𝑛𝑖 =
1
Δx

∫
C𝑖
𝜌(x, 𝑡𝑛) dx. (D.1)

The discrete time evolution of this quantity is given by

𝑄𝑛+1
𝑖 = 𝑄𝑛𝑖 −

Δ𝑡

Δx

𝑑∑︁
𝑗=1

(𝐹𝑛
𝑗,𝑖+1/2 − 𝐹

𝑛
𝑗,𝑖−1/2) (D.2)

where Δ𝑡 is the time integration step and 𝐹𝑛
𝑗,𝑖+1/2 and 𝐹𝑛

𝑗,𝑖−1/2 are the numerical fluxes
on the interfaces of cell C𝑖 in the 𝑗 dimension. We computed the numerical fluxes using
the Lax-Friedrichs method.
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Appendix E

Some more theoretical results
regarding Chapter 6

In this Appendix, we give some theoretical result that are used throughout Chapter 6.

E.1 Global stability with full plasticity

In the absence of non-reactive followers (that is, 𝑝 = 1, or, equivalently Φ𝐹 = 0), the
control solution we propose ensure global stability in some regions of of the parameters’
space.

Specifically, the results of Theorem 6.2 can be rephrased so to ensure the strict
positivity of 𝜌𝐿 and 𝜌𝐹 for any 𝑥 ∈ S and 𝑡 ∈ R≥0.

Theorem E.1 (Analytical solution of for 𝜌𝐿 and 𝜌𝐹 when 𝑝 = 1). When 𝑝 = 1 and 𝑞
and 𝑢 are chosen as in Section 6.2.3 it results

2𝜌𝐿 (𝑥, 𝑡) = 𝜌̄(𝑥) (1 − e−𝐾𝑡 ) + 𝜌0 (𝑥)e−𝐾𝑡 + 𝜌∗0 (𝑥)e
−𝑎𝑡 + 𝜌̄(𝑥) 𝑏

𝑎
(1 − e−𝑎𝑡 )

+ 𝑏

𝑎 − 𝐾 [𝜌0 (𝑥) − 𝜌̄(𝑥)]
(
e−𝐾𝑡 − e−𝑎𝑡

)
, (E.1a)

2𝜌𝐹 (𝑥, 𝑡) = 𝜌̄(𝑥) (1 − e−𝐾𝑡 ) + 𝜌0 (𝑥)e−𝐾𝑡 − 𝜌∗0 (𝑥)e
−𝑎𝑡 − 𝜌̄(𝑥) 𝑏

𝑎
(1 − e−𝑎𝑡 )

− 𝑏

𝑎 − 𝐾 [𝜌0 (𝑥) − 𝜌̄(𝑥)]
(
e−𝐾𝑡 − e−𝑎𝑡

)
, (E.1b)
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where 𝜌∗0 = 𝜌𝐿0 − 𝜌𝐹0 , 𝑎 = 𝐾𝐹𝐿 + 𝐾𝐿𝐹 , and 𝑏 = 𝐾𝐹𝐿 − 𝐾𝐿𝐹 .

Proof. For full plasticity, that is 𝑝 = 1, the model (6.1) simplifies to

𝜌𝐿𝑡 (𝑥, 𝑡) +
[
𝜌𝐿 (𝑥, 𝑡)𝑢(𝑥, 𝑡)

]
𝑥
+

[
𝜌𝐿 (𝑥, 𝑡) ( 𝑓 ∗ 𝜌) (𝑥, 𝑡)

]
𝑥
= 𝐷𝜌𝐿𝑥𝑥 (𝑥, 𝑡) + 𝑞(𝑥, 𝑡) (E.2a)

𝜌𝐹𝑡 (𝑥, 𝑡) +
[
𝜌𝐹 (𝑥, 𝑡) ( 𝑓 ∗ 𝜌) (𝑥, 𝑡)

]
𝑥
= 𝐷𝜌𝐹𝑥𝑥 (𝑥, 𝑡) − 𝑞(𝑥, 𝑡),

(E.2b)

with 𝜌 = 𝜌𝐿 + 𝜌𝐹 . This problem can be equivalently studied in terms of 𝜌 and 𝜌∗ =

𝜌𝐿 − 𝜌𝐹 , thanks to the change of variables

𝜌𝐿 (𝑥, 𝑡) = 𝜌(𝑥, 𝑡) + 𝜌∗ (𝑥, 𝑡)
2

(E.3a)

𝜌𝐹 (𝑥, 𝑡) = 𝜌(𝑥, 𝑡) − 𝜌∗ (𝑥, 𝑡)
2

. (E.3b)

Fixing 𝑢 and 𝑞 as detailed in Section 6.2.3, it results

𝜌𝑡 (𝑥, 𝑡) = −𝐾 𝜌(𝑥, 𝑡) + 𝐾 𝜌̄(𝑥) (E.4)

𝜌∗𝑡 (𝑥, 𝑡) = −𝑎 𝜌∗ (𝑥, 𝑡) + 𝑏 𝜌(𝑥, 𝑡). (E.5)

The dynamics of 𝜌 is linear and independent from that of 𝜌∗, hence it can be analytically
solved as in (6.15). Thus, it results that the dynamics of 𝜌∗ is linear and influenced by 𝜌
that is known at any 𝑥 and 𝑡. The solution for (E.5) is then

𝜌∗ (𝑥, 𝑡) = 𝜌∗0 (𝑥)exp(−𝑎𝑡) +
∫ 𝑡

0
exp[−𝑎(𝑡 − 𝜏)]𝑏𝜌(𝑥, 𝜏) d𝜏. (E.6)

Substituting (6.15) and (E.6) into (E.3), we can recover the Theorem’s thesis. ■

Theorem E.2. Assuming 𝜌𝐿0 > 0 for any 𝑥 ∈ S, 𝑏 < 0, 𝑎 < 𝐾 and |𝑏/(𝑎 − 𝐾) | < 1,
𝜌𝐿 , 𝜌𝐹 > 0 for any 𝑥 ∈ S and 𝑡 ∈ R≥0.

Proof. The leaders density in (E.1a) can be rewritten as

2𝜌𝐿 (𝑥, 𝑡) = 𝜌̄(𝑥)𝐻1 (𝑡) + 𝐻2 (𝑥, 𝑡), (E.7)

with

𝐻1 (𝑡) = 1 + 𝑏
𝑎
− exp(−𝐾𝑡)

(
𝑏

𝑎 − 𝐾 + 1
)
+ exp(−𝑎𝑡)

(
𝑏

𝑎 − 𝐾 − 𝑏

𝑎

)
, (E.8)
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𝐻2 (𝑥, 𝑡) = 𝜌∗0 (𝑥)exp(−𝑎𝑡) + 𝜌0 (𝑥)
[
exp(−𝐾𝑡) + 𝑏

𝑎 − 𝐾 (exp(−𝐾𝑡) − exp(−𝑎𝑡))
]
.

(E.9)

Regarding 𝐻1 (𝑡), choosing |𝑏/(𝑎 − 𝐾) | < 1 guarantees that 1 + 𝑏/𝑎 is strictly
positive (notice also that, by construction, |𝑏/𝑎 | < 1). The last two summands of (E.8)
are negative and monotonically decrease in absolute value to 0. Hence, they attain their
maximum absolute value for 𝑡 = 0. Since we also have 𝐻1 (0) = 0, we know that
𝐻1 (𝑡) ≥ 0 ∀ 𝑡 ∈ R≥0.

Regarding 𝐻2 (𝑥, 𝑡), it can be rewritten as

𝐻2 (𝑥, 𝑡) = 𝜌𝐿0 (𝑥)exp(−𝐾𝑡)
(
1 + 𝑏

𝑎 − 𝐾

)
+ 𝜌𝐿0 (𝑥)exp(−𝑎𝑡)

(
1 − 𝑏

𝑎 − 𝐾

)
+ 𝜌𝐹0 (𝑥)

(
1 + 𝑏

𝑎 − 𝐾

)
[exp(−𝐾𝑡) − exp(−𝑎𝑡)] . (E.10)

Choosing |𝑏/(𝑎 − 𝐾) | < 1, and recalling 𝜌𝐿0 (𝑥) > 0 ∀ 𝑥 ∈ S by assumption, ensures the
first two summands are strictly positive. The last summand is non-negative if 𝑎 > 𝐾 .

Under the mild assumptions of choosing 𝑏 < 0, 𝑎 > 𝐾 , |𝑏/(𝑎 − 𝐾) | < 1, and
𝜌𝐿0 (𝑥) > 0 makes 𝐻1 ≥ 0 ∀ 𝑡 ∈ R≥0 , and 𝐻2 (𝑥, 𝑡) > 0 ∀ 𝑥 ∈ S and 𝑡 ∈ R≥0, showing the
leaders’ density always remains strictly positive.

We remark that, under the additional assumption of 𝜌𝐹0 > 0, 𝜌𝐹 remains strictly
positive as well. We can rewrite (E.1b) as

𝜌𝐹 (𝑥, 𝑡) = 𝜌̄(𝑥)𝑌1 (𝑡) + 𝑌2 (𝑥, 𝑡), (E.11)

with

𝑌1 (𝑡) = 1 − 𝑏

𝑎
− exp(−𝐾𝑡)

(
1 − 𝑏

𝑎 − 𝐾

)
+ exp(−𝑎𝑡)

(
𝑏

𝑎
− 𝑏

𝑎 − 𝐾

)
, (E.12)

𝑌2 (𝑥, 𝑡) = −𝜌∗0 (𝑥)exp(−𝑎𝑡) + 𝜌0 (𝑥)
[
exp(−𝐾𝑡) − 𝑏

𝑎 − 𝐾 (exp(−𝐾𝑡) − exp(−𝑎𝑡))
]
.

(E.13)

𝑌1 is always non-negative, as all its summands are positive except for the third one, which
is negative, attains its maximum value at 𝑡 = 0 and then monotonically decreases in
absolute value to 0. Since 𝑌1 (0) = 0, then 𝑌1 ≥ 0 ∀ 𝑡 ∈ R≥0. Equation (E.13) can be
rewritten as
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𝑌2 (𝑥, 𝑡) = 𝜌𝐿0 (𝑥)
(
1 − 𝑏

𝑎 − 𝐾

)
[exp(−𝐾𝑡) − exp(−𝑎𝑡)]

+ 𝜌𝐹0 (𝑥)exp(−𝑎𝑡)
(
1 + 𝑏

𝑎 − 𝐾

)
𝜌𝐹0 (𝑥)exp(−𝐾𝑡)

(
1 − 𝑏

𝑎 − 𝐾

)
, (E.14)

resulting in only strictly positive summands if 𝜌𝐹0 > 0. Being 𝑌1 always non-negative
and 𝑌2 always positive, 𝜌𝐹 always remains strictly positive. ■

Remark E.1. The cases 𝑎 = 𝑏 = 0, and 𝐾 → 𝑎 can be analytically studied, but are out
of the scope of the Thesis.

By letting the time go to infinity in (E.1a) and (E.1b), we recover the steady-state
expressions for the leaders’ and followers’ densities, that is

𝜌𝐿𝑠𝑠 (𝑥) =
𝜌̄(𝑥)

2

(
1 + 𝑏

𝑎

)
, (E.15a)

𝜌𝐹𝑠𝑠 (𝑥) =
𝜌̄(𝑥)

2

(
1 − 𝑏

𝑎

)
. (E.15b)

We remark that |𝑏/𝑎 | < 1 by construction. By integrating such expression over S, we
recover the steady-state leaders and followers mass, that is

𝑀𝐿
𝑠𝑠 =

1
2

(
1 + 𝑏

𝑎

)
, (E.16a)

𝑀𝐹
𝑠𝑠 =

1
2

(
1 − 𝑏

𝑎

)
. (E.16b)

Notice that, a negative value of 𝑏 means the leaders reaction into followers is faster than
the one of followers into leaders. This results in having 𝑀𝐿

𝑠𝑠 < 𝑀
𝐹
𝑠𝑠.

E.2 Steady-state solution for non-reactive followers

Theorem E.3. If 𝜌(𝑥, 𝑡) = 𝜌̄(𝑥), (6.1c) admits only the steady-state solution

𝜂𝐹 (𝑥) = Φ𝐹∫
S ℎ(𝑥) d𝑥

ℎ(𝑥), (E.17)

with ℎ defined as in (6.20).
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Proof. Substituting 𝜂𝐹𝑡 = 0, 𝜂𝐹 (𝑥, 𝑡) = 𝜂𝐹 (𝑥), and 𝜌(𝑥, 𝑡) = 𝜌̄(𝑥) into (6.1c) leads us to

𝐷𝜂𝐹𝑥𝑥 (𝑥) −
[
𝜂𝐹 (𝑥) ( 𝑓 ∗ 𝜌̄) (𝑥)

]
𝑥
= 0. (E.18)

Integrating this in space and isolating 𝜂𝐹 at first member, yields to

𝜂𝐹𝑥 (𝑥) =
𝜂𝐹 (𝑥) ( 𝑓 ∗ 𝜌̄) (𝑥)

𝐷
+ 𝐴, (E.19)

where 𝐴 is the integration constant. Equation (E.19) is a linear one-dimensional ODE
with non-constant coefficients. Its solution ca be written as

𝜂𝐹 (𝑥) = 𝐵 exp
{

1
𝐷

∫
( 𝑓 ∗ 𝜌̄) (𝑥) d𝑥

}
+

+ 𝐴 exp
{

1
𝐷

∫
( 𝑓 ∗ 𝜌̄) (𝑥) d𝑥

} ∫
exp

{
1
𝐷

∫
( 𝑓 ∗ 𝜌̄) (𝑦) d𝑦

}
d𝑥. (E.20)

where 𝐵 is an integration constant.
The first term at second member of (E.20) is positive, and it is also periodic (it is

the exponential of a periodic function). Notice that 𝑓 ∗ 𝜌̄ is periodic as the result of a
circular convolution, and it sums to 0 when integrated over S for the Fubini’s theorem for
convolutions. Hence the integral of 𝑓 ∗ 𝜌̄ is itself periodic. The second term at second
member of (E.20), instead, cannot be periodic unless 𝐴 = 0, since

exp
{

1
𝐷

∫
( 𝑓 ∗ 𝜌̄) (𝑦) d𝑦

}
is periodic, but it cannot sum to 0 (as an exponential, it is always positive). It follows
that it needs to be 𝐴 = 0.

For (E.20) (with 𝐴 = 0) to sum to the non-reactive followers’ mass Φ𝐹 , it must be
𝐵 = Φ𝐹/

∫
S ℎ(𝑥) d𝑥, yielding the theorem’s claim. ■

Remark E.2. We remark that (E.17) is positive by construction, as ℎ is an exponential
(see (6.20)), and

Φ𝐹∫
S ℎ(𝑥) d𝑥

> 0

by construction.
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E.3 No diffusivity affecting the population’s dynamics
Here we study problem (6.1) fixing 𝐷 = 0, that is, no diffusion is affecting the agents’
dynamics. For the control problem in Section 6.2.2 to be solvable, (6.1c) (with 𝐷 = 0)
should have a steady-state solution, 𝜂𝐹 , for 𝜌 = 𝜌̄, that is[

𝜂𝐹 (𝑥) ( 𝑓 ∗ 𝜌̄) (𝑥)
]
𝑥
= 0. (E.21)

By a spatial integration, it must be

𝜂𝐹 (𝑥) ( 𝑓 ∗ 𝜌̄) (𝑥) = 𝐴, (E.22)

where 𝐴 is an integration constant. For Fubini’s theorem for convolutions, we know that,
being 𝑓 odd by construction, it should be∫

S
( 𝑓 ∗ 𝜌̄) (𝑥) d𝑥 =

∫
S
𝑓 (𝑥) dx

∫
S
𝜌̄(𝑥) d𝑥 = 0. (E.23)

Thus, either (𝑖) 𝑓 ∗ 𝜌̄ = 0 ∀ 𝑥 ∈ S, or (𝑖𝑖) 𝑓 ∗ 𝜌̄ switches sign in S, and it is 0 on a
set of finite points. The case (𝑖) holds only for density profiles which are equilibrium
configurations of the system, as, for example, constant profiles. In such scenarios, the
control problem becomes trivial. In case (𝑖𝑖), (E.22) can hold only if 𝐴 = 0, as 𝑓 ∗ 𝜌̄ is
0 on a finite set of points. This means

𝜂𝐹 (𝑥) ( 𝑓 ∗ 𝜌̄) (𝑥) = 0. (E.24)

Such a relation can hold, only for 𝜂𝐹 = 0 ∀ 𝑥 ∈ S, meaning that, the problem cannot
account for non-reactive followers if 𝐷 = 0.
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