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Abstract

The research presented in this thesis aimed to model human behaviour in complex
perceptual-motor tasks. It starts by investigating whether dynamical perceptual-motor
primitives (DPMPs) could also be used to capture human navigation in a first-person
herding task. To achieve this aim, human participants played a first-person herding
game, in which they were required to corral virtual cows, called target agents, into
a specified containment zone. In addition to recording and modelling participants’
movement trajectories during gameplay, participants’ target selection decisions (i.e.,
the order in which participants corralled targets) were recorded and modelled. The
results revealed that a simple DPMP navigation model could effectively reproduce the
movement trajectories of participants and that almost 80% of the participant’s target
selection decisions could be captured by a simple heuristic policy. Importantly, when
this policy was coupled to the DPMP navigation model, the resulting system could
successfully simulate and predict the behavioural dynamics (movement trajectories and
target selection decisions) of participants in novel multi-target contexts.

Building on these findings, the study further explored multi-herder and multi-agent
herding scenarios, which introduce additional layers of complexity. In these scenarios,
human participants coordinated their movements with one another, dynamically adjust-
ing their strategies based on the behaviour of both their fellow herder and the target
agents. Modelling results revealed that human herding behaviour in these multi-agent
contexts could be replicated using simple control rules and decision-making processes.
Artificial agents were then developed - using these models and additionally, Deep Rein-
forcement Learning techniques - in order to cooperate with human agents to complete the
multiagent herding ask. By integrating multi-herder dynamics into the model, the study
provides insights into how artificial agents could be designed to work alongside humans
in tasks requiring collaborative joint action, such as search and rescue operations, crowd
management, or autonomous driving systems, where multiple entities must cooperate to
achieve shared goals.
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1 Introduction

1.1 Context of the research topic
Animals may well be among the most complex entities in existence. Composed of
elementary particles, they exhibit increasing layers of complexity at every organisational
level—from particles to atoms, from atoms to molecules, from molecules to cells, from
cells to organs, and finally, from organs to the entire being. Each level adds more
intricacy, challenging the notion that reductionism can fully explain the behaviour of
complex systems [1].

Yet, amidst this complexity, simple laws governing interactions—whether between
agents, between agents and their environment, or both—can yield powerful explanations
and predictions of behaviour. Importantly, an agent need not possess consciousness
or intelligence akin to humans for complex behaviours to emerge. Ants build bridges,
bees coordinate foraging, and termites construct elaborate mounds, all explainable via
simple, self-organising dynamical rules. Indeed, these examples highlight how simple
dynamical rules, once discovered, can explain behaviour that appears greater than the
sum of its parts. Thus, despite the myriad components making up intentional agents,
their behaviour can still be predicted and understood from mathematical laws.

With regards to understanding human action and perceptual-motor behaviour, a
significant shift occurred in the 1980s with the work of Scott Kelso, Peter Kugler,
and Michael Turvey and colleagues (e.g., [2, 3, 4]). Of particular relevance here, was
the task dynamics framework outline by Saltzman and Kelso [2]. Here they provided
the first detailed account of how the mathematics of dynamical systems could be used
to understand human perceptual-motor behaviour, utilising simple coupled ordinary
differential equations to model fundamental human movements, such as arm extensions,
wheel cranking, or reaching for a cup. In the 2000s, these models were then extended
to capture a wide range of human navigational movements [5, 6, 7, 8, 9], forming
the foundation of the behavioural dynamics approach to modelling human perceptual-
motor behaviours [7]. Not only were such task-dynamical models applicable to human
navigation, but they were widely applied to interpersonal coordination and joint action
[10, 11, 12] - providing understanding that has been central to the modelling of perceptual-
motor behaviour in more complex tasks [13, 14, 15, 16] similar to the ones presented in
this thesis. The research underpinning this thesis thus leverages both these navigation
models, along with the task/behavioural dynamics approach and modern computational
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1.2. Key research questions

(deep learning) techniques to model, understand, and predict human behaviour in first-
person herding tasks.

Herding tasks—where one or more herder agents must capture, corral, and contain
one or more target agents within a predefined containment zone [17]—may initially
appear niche. However, they provide a rich testbed for studying human cooperation
and coordination. These tasks incorporate elements of decision-making, apparent path
planning, and the spontaneous emergence of roles. Furthermore, herding has practical
applications in search-and-rescue scenarios faced by civil protection agents, who must
guide groups to safety during emergencies such as earthquakes or fires. As such, herding
is an ideal scenario for testing theories of human perceptual-motor behaviour.

Previous research on modelling human perception-action has typically focused on
either very large-scale crowd dynamics [18, 19] or very small-scale individual or dyadic
behaviours [20, 21]. Herding occupies a middle ground, involving an intermediate
number of participants where individual actions significantly influence the collective
behaviour of the group. Moreover, although past research on herding has often relied on
simplifying assumptions such as flocking behaviour [22, 23, 24, 17, 25] and birds-eye
view dynamics [26, 16], the work in this thesis distinguishes itself by removing these
assumptions, focusing instead on the first-person perspective in herding a number of
autonomous, non-interactive agents.

With regards to the practical applications of herding tasks to search-and-rescue
scenarios, one may imagine scaling up the training of novice participants in simulation
environments by replacing human coactors with artificial agents. In scenarios where
access to expert human behaviour is limited, it becomes crucial to explore how these
mathematical laws and computational tools can be harnessed to program such artificial
agents. Such models can also find applications in developing robots capable of not only
executing such actions [27, 28] but also physically cooperating with humans [29, 30],
bridging the gap between expert knowledge and real-world applications.

1.2 Key research questions
Key research questions to be addressed in this thesis include:

• Can mathematical laws be used to capture human motion in shepherding tasks?

• Can simple heuristic rules or computational models be discovered to predict human
decision-making in such tasks?

• What are the best combination of these laws/rules to model multi-agent shepherding
behaviour?

• Can we generate human-autonomy teaming in this representative task context?

2



Chapter 1. Introduction

1.3 Contributions of this work
This work has advanced the modelling of human navigation in first-person shepherding
tasks, proposing a new model to describe human motion in this context. Then, it combined
this model with rules-based policies of human decision-making in single-herder contexts
(i.e., the decision about which target to corral at a given point in time). It has furthermore
explored computational tools, such as Deep Reinforcement Learning, to replace these
simple rules-based approaches. Finally, it has integrated various combinations of these
models to generate successful human-machine teaming in a real-time, multiagent human-
machine hearing task.

1.4 Relevance to risk and complexity
Whether trying to design artificial agents that can cooperate with humans, or train them
in simulation environments, in high-risk scenarios - such as military and defence training
and operations, civil protection scenarios like fire and earthquake evacuation, the work
presented in this thesis has direct applications to Risk and Complexity. Human behaviour
is complex. Thus modelling human behaviour is modelling complex behaviour - human
behaviour inherently is more than the sum of its parts, displaying many characteristics
of complex, self-organising systems.

1.5 Thesis structure and outline
This thesis is divided into 8 chapters, with this being Chapter 1. Chapter 2 delves into
the necessary mathematical frameworks and literature that provide the foundation for
understanding and modelling the behaviour of herding agents (human or otherwise). It
covers fundamental mathematical tools such as differential equations, control theory,
and agent-based modelling. This chapter reviews past research, including classical herd-
ing strategies, agent-environment interactions, and the evolution of dynamical systems
approaches to perceptual-motor tasks. Special attention is given to challenges such as
multi-agent interactions and scalability, highlighting the gaps in existing models and
outlining the goals of the present research in addressing these issues.

The third chapter details the methods used for data collection, analysis, and modelling.
It begins by describing the experimental setup and the first-person herding game used
to record human herding behaviour. Next, it covers the analysis techniques applied to
understand the movement trajectories and decision-making patterns of human herders.
The chapter also introduces the Deep Reinforcement Learning (DRL) algorithm used
to develop the DRL artificial agents investigated in chapter 7. This methodological
framework is crucial for understanding how both human and artificial agents were trained
and tested in the herding task.

Chapter 4 marks the beginning of the modelling process, focusing on single-herder,
single-target dynamics. Drawing on previous work in agent-based systems and dynamical
models, this chapter modifies and fine-tunes the Fajen and Warren [5] navigational model

3



1.5. Thesis structure and outline

to capture how a single herder approaches and corrals a single target. It introduces an
Ordinary Differential Equation (ODE) model tailored to the task and validates the model
by comparing it with empirical human trajectory data. Through this validation, the
chapter demonstrates the accuracy of the model in predicting human behaviour, setting
the foundation for more complex herding scenarios.

Building on this single-target model, Chapter 5 incorporates multiple target agents
to investigate the decision-making dynamics of human participants when tasked with
corralling more than one agent. It describes how human participants navigate the com-
plexities of multi-target scenarios, including how they prioritise targets and adapt their
strategies dynamically. The chapter develops several heuristic models to explain these
decision policies and evaluates their effectiveness in simulating human behaviour. One
heuristic model emerged as the most fitting, providing insights into the decision rules
that guide human herding behaviour in these more complex settings.

Chapter 6 increases the complexity of the task by introducing multiple human herder
agents and additional target agents. It explores how two human herders coordinate
their movements to efficiently corral targets while avoiding overlap and conflict in their
strategies. The chapter models the cooperative dynamics between herders, drawing on
both the movement models developed earlier and decision-making frameworks from
multi-agent literature. The results demonstrate how the developed models are able
replicate the coordination patterns that emerge among herders.

The final chapter (Chapter 7) shifts the focus to human-machine teaming. It describes
the development and evaluation of autonomous herding agents that mimic human be-
haviour using the ODE motion model and decision-making strategies derived from either
heuristic rules or DRL. The chapter compares the performance of human-machine teams
to that of human-human teams, analysing the strengths and weaknesses of each compu-
tational architecture. The results reveal how closely autonomous agents can approximate
human strategies in real-time human-machine teaming, and where their limitations lie.
This chapter offers critical insights into the potential of artificial agents to collaborate
with humans in complex task environments.

The concluding chapter summaries the key findings from the thesis, reiterating how
the research contributes to understanding human herding behaviour and the development
of artificial agents capable of similar tasks. It emphasises the success of DPMP-based
models, heuristic decision-making, and DRL in replicating and predicting human perfor-
mance in herding tasks. The chapter also discusses the broader implications for fields like
robotics, AI, and human-machine interaction. Finally, it identifies several avenues for
future work, including improving the scalability of the models for more complex multi-
agent scenarios, enhancing the decision-making algorithms, and exploring real-world
applications in dynamic environments.

4



Chapter 1. Introduction

1.6 Description of research periods
Year I, the coursework-based year, and Year II, were spent entirely in Naples, Italy, at the
SSM. Year III and IV observed a division of research time across the SSM and Macquarie
University, Australia, which housed the laboratories to conduct the experiments needed.
Specifically, the periods

• 1 Nov 2022 - 1 June 2023 (7 months)

• 1 September 2023 - 25 May 2024 (9 months)

• 1 September 2024 - 31 October 2024 (2 months)

were spent at the Performance and Expertise Research Centre at Macquarie Univer-
sity, under the supervision of Prof. Michael Richardson, SSM board member.
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2 Background

While modelling human behaviour in general presents a formidable challenge, significant
progress has been made in using dynamical systems and computational tools to model,
predict, and reproduce human behaviour in specific perceptual-motor tasks, such as
simple limb movements [31] and navigation [5, 8]. Shepherding tasks [17], which involve
the coordination and control of agents to achieve a collective goal (herding target agents
into a predefined containment zone) offer a particularly valuable use case for further
investigating the utility of these modelling approaches for capturing and understanding
complex, human and multi-person (-agent) behaviour.

Previous research on shepherding, however, has often relied on several simplifying
assumptions to make the modelling process more manageable, such as assuming flocking
[22, 23, 24, 17, 25] and providing a birds-eye-view of the herding space [26, 16]. By
removing these assumptions, we aim to extend this work to more realistic scenarios.
The long term goal of my research program is to develop computational models of
human expert herding and navigational behaviour that can be employed to train human
participants in virtual or real search-and-rescue tasks, working alongside cooperative
autonomous agent teammates. The thesis work presented here is a step towards this long
term goal, by advancing our understanding of human and artificial herding behaviours
with practical implications for enhancing human-machine collaboration in complex,
dynamic environments.

2.1 Mathematical formulation
The herding problem can be formulated in mathematical terms as follows. Let x𝑖 (𝑡) ∈ R2

and y 𝑗 (𝑡) ∈ R2 represent the positions of the 𝑖-th target agent and 𝑗-th herder agent relative
to the center of the containment zone (see Fig. 2.1). The control action 𝑢 governing the
dynamics of the herder is defined by

¥y 𝑗 = 𝑢(𝑡, x1, ..., xNTA , y1, ..., yNHA ) (2.1)

where 𝑁TA and 𝑁HA denote the number of target agents and herder agents, respectively.
The objective is to determine 𝑢 such that

∥x𝑖 ∥ ≤ 𝑅C , ∀𝑖,∀𝑡 > 𝑡′, (2.2)

7
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RC

xi

yj

Figure 2.1: Basic formulation of the shepherding environment. The herder agents are
depicted as squares and the target agents as circles. The large central circle is the
containment zone.
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Chapter 2. Background

where 𝑅C is the radius of a specified containment zone (here taken to be circular), and
for some arbitrary time 𝑡′, ensuring that y 𝑗 (𝑡) exhibits human-like behaviour for all 𝑗
(the meaning of what "human-like" quantitatively means will be discussed later, starting
from Chapter 4).

2.2 Dynamical Systems Approaches for Modeling Ac-
tions in Shepherding

Dynamical systems approaches have proven to be particularly effective in modelling
the complex behaviours observed in shepherding tasks [32, 13, 14]. These approaches
utilise low-dimensional, environmentally coupled ODEs or PDEs to capture the essential
dynamics of both herders and targets. For example, research by [15] demonstrated that
the navigational trajectories of human herders could be effectively modelled using sim-
ple mass-spring systems (see section 2.2.3 for more details), that incorporate attractive
and repulsive forces to represent the influence of goals and obstacles. Similarly, stud-
ies by [33] employed similar models to control autonomous herding agents, validating
these models through simulations and real-world experiments. The collective results of
the previous work has demonstrated how these models, combining ordinary differential
equations with rules-based decision policies, not only help in understanding the funda-
mental principles governing shepherding behaviours but also provide a robust framework
for developing autonomous systems capable of human-like herding performance. The
integration of these dynamical models within agent-based simulations [34, 16] has also
allowed researchers to develop a more comprehensive understanding of human herding
strategies, enabling the optimisation and refinement of control algorithms for both vir-
tual and physical herding scenarios [33]. The thesis work presented here significantly
extends this previous work, by developing a herding movement or navigational model
that better generalises across a range of first-person, multiagent herding task scenarios.
Before presenting the proposed model - that is able to navigate towards and corral mov-
ing targets - it is important to first understand (i) the dynamical functions or dynamical
perceptual-motor primitives that form the foundation to dynamical models of human
perceptual-motor behaviour and (ii) the DPMP navigational model proposed by Fajen
and Warren [5, 6] that formed the foundation to the model investigate here.

2.2.1 Dynamical Perceptual-Motor Primitives
There is now a growing body of research demonstrating how nearly all human perceptual-
motor behaviours can be modelled (approximated) using a small set of environmen-
tally coupled non-linear dynamical functions or dynamical perceptual-motor primitives
(DPMPs) [31, 35]; namely, environmentally coupled fixed-point (mass-spring) and limit-
cycle (self-sustained oscillator) equations [36, 31, 2, 16, 37, 38, 39, 7]. In the case of
modelling human perceptual-motor behaviour, these primitives relate to the two general
classes of informationally coupled task directed human movements: discrete movement
(e.g., moving towards goal, or reaching for or grasping an object, throwing a ball, tapping
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2.2. Dynamical Systems Approaches for Modeling Actions in Shepherding

a key), and rhythmic behaviour (e.g., walking, clapping, chewing, hammering a nail).
Indeed, research has demonstrated how DPMP models can effectively capture everything
from simple object reaching, collision avoidance [38], and postural control tasks [2], to
more complex interpersonal object pick-place and pass tasks [40, 41, 42], competitive
games such as air-hockey [43], and crowd behaviours [18]. DPMP models have also been
used for the self-organised control of robots executing similar actions or tasks [27, 28],
as well as for human-robot interaction [29].

As noted above and of most relevance here, is that Fajen and Warren (e.g., [5, 6, 7, 8])
have remonstrated how a simple, fixed point, DPMP functions can be employed to capture
and predict the route selection and navigational behaviour of humans across a range of
different task environments.

2.2.2 Fajen and Warren’s Navigational Model

Consistent with the dynamical systems approach to understanding human behaviour,
Fajen and Warren’s navigational model [5] offers a comprehensive framework for un-
derstanding and predicting human path trajectories in complex environments. Their
model emphasises the emergent nature of navigational behaviours, proposing that these
behaviours arise from the dynamic interactions between an agent’s heading direction
and the attractive and repulsive influences of goals and obstacles. This approach aligns
closely with the principles observed in herding tasks, where the movement of herders and
targets can be understood as a result of similar dynamic interactions. By incorporating
elements such as steering dynamics and obstacle avoidance, Fajen and Warren’s model
provides a robust theoretical basis for developing advanced herding strategies that can
be applied to both human and artificial agents. Their work has significantly influenced
subsequent research in the field, including studies that integrate these navigational prin-
ciples with reinforcement learning ([37, 44, 45]) and other adaptive control techniques
([33]) to enhance the decision-making capabilities of herding agents.

To fully appreciate the contributions of Fajen and Warren’s navigational model, it is
essential to delve into its mathematical underpinnings. Their model is characterised by
an ordinary differential equation (ODE) that describes how an agent’s heading direction
evolves over time in response to the spatial configuration of goals and obstacles. This
equation incorporates terms for both attractive and repulsive forces, reflecting the agent’s
tendency to move towards goals while avoiding collisions. The mathematical formalism
of this model provides a clear framework for simulating and analysing navigational
behaviour, offering insights into how simple rules can give rise to complex and adaptive
movement patterns. By reviewing the key terms and parameters of the Fajen and Warren
model, we can better understand its applicability to herding scenarios and its potential
for informing the design of autonomous herding agents.

Stated succinctly, the Fajen and Warren navigation model [5] captures the dynamical
evolution in time of an agent’s heading direction, 𝜙, measured in angles with respect to
an external frame of reference (see Fig. 2.2a), which is the direction in which the agent
moves, and can be modelled by:
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Chapter 2. Background

(a) Representation of the model vari-
ables in the Fajen and Warren model,
reproduced from [5] with permission.

Herder agent

φ

ψg

ψo

dg

Arbitrary obstacle

Target goal location

do

(b) Carry-over to the herding problem.
The arbitrary obstacle could be any
avoided game element.

Figure 2.2: Basic navigatory setup of the navigation task on the left and the shepherding
task on the right. The dotted vertical line represents the external frame of reference and
the arrow, the heading direction of the observer or the agent.

¥𝜙 = −𝑏 ¤𝜙−𝑘𝑔 (𝜙 − 𝜓𝑔) (𝑒−𝑐1𝑑𝑔 + 𝑐2)︸                             ︷︷                             ︸
attraction to goal location

+𝑘𝑜 (𝜙 − 𝜓𝑜) (𝑒−𝑐3 |𝜙−𝜓𝑜 | ) (𝑒−𝑐4𝑑𝑜 )︸                                       ︷︷                                       ︸
repulsion from obstacles

(2.3)

In this equation, the acceleration, ¥𝜙, is influenced by three components:

1. Damping Term: The term −𝑏 ¤𝜙 represents a damping effect, which acts to slow
down the agent’s rotational acceleration over time, thereby stabilizing its heading
direction. 𝑏 is the damping coefficient.

2. Attraction to Goal Location: The term −𝑘𝑔 (𝜙 − 𝜓𝑔) (𝑒−𝑐1𝑑𝑔 + 𝑐2) models the
attractive torque towards a goal location. Here, 𝜓𝑔 is the angular position of the
goal relative to the external frame of reference, 𝑑𝑔 is the distance to the goal, and
𝑘𝑔, 𝑐1 and 𝑐2 are positive constants that determine the strength and decay of this
attraction.

3. Repulsion from Obstacles: The term +𝑘𝑜 (𝜙−𝜓𝑜) (𝑒−𝑐3 |𝜙−𝜓𝑜 | ) (𝑒−𝑐4𝑑𝑜 ) accounts
for the repulsive torque from obstacles. In this term, 𝜓𝑜 represents the angular
position of an obstacle, 𝑑𝑜 is the distance to the obstacle, and 𝑘𝑜, 𝑐3 and 𝑐4 are
positive constants that define the intensity and decay of the repulsion effect.

Across a range of studies [5, 6, 7, 8, 9], Fajen and Warren and colleagues have
demonstrate this model can effectively and successfully model human navigation in
cluttered environments [5], interception of moving targets [6], and model collective
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human motion in crowds [9]. The wide applicability of this model testifies to the unifying
nature of the underlying dynamics of human motion, and implies that this same models
could be adapted to more complex human perceptual-motor tasks. For instance, [41, 42]
have also demonstrated how this same model can be used to capture the arm movement
dynamics of pairs on individuals completing collaborative pick-and-place tasks.

Of particular interest here, was whether this model (2.3) could be adapted to model
the navigational behaviour a human herders in a cooperative multi-herder, multi- target
herding task, as well as its potential use in designing autonomous herding agents. As
detailed in Chapter 4, the model can be adapted to effectively simulate the target approach
and corralling movements of human herders, by simply treating target agents as goal
locations and other environment objects as obstacles - other herders and non-targeted
targets (Fig. 2.2b). Before detailing this model, the rest of this provides a short review of
previously-used approaches to modelling human shepherding behaviour and the action
decision or goal state activation functions required for the successful enactment of DPMP
models in complex task scenarios.

2.2.3 Dynamical Systems applied to the tabletop shepherding task
The majority of previous research exploring and modelling human shepherding be-
haviour has employed tabletop versions of the task. These tabletop shepherding tasks, as
described in [15, 16, 46], have served as an excellent laboratory task for studying human
cooperation and coordination. The experimental setup has also provided an excellent
platform for developing and testing artificial agents capable of successfully collaborating
with human participants [44, 45]. In the typical experiment, pairs of participants stand
on opposite sides of a large touchscreen displaying a virtual herding environment. the
environment includes a containment zone, virtual sheep (targets), and two squares rep-
resenting the herder agents (HA), which the human participants control controlled using
motion tracking sensors or by touching and moving their HA with their index finger or a
touch screen pen (see Fig. 2.3 for more details).

Research employing this task has demonstrated that, given enough practice, all pairs
converge to the same two modes of perceptual-motor movements and coordination: (1)
search-and-recover behaviour, where players/herders consistently move to and corral
the sheep furthest from the containment zone on their side of the table, progressing
from one distant sheep to the next until all are within the containment zone; and (2)
coupled oscillatory containment, where the players oscillate around the containment
zone, building a ’circular’ wall to contain the herd. More importantly, both of these
behaviours can be effectively modelled using a simple, environmentally coupled DPMP
model [33, 15, 47, 48]. This model [15], takes the form:

¥𝑟𝑖 + 𝑏𝑟 ¤𝑟𝑖 + 𝜖𝑟 (𝑟𝑖 − 𝑟𝑠 𝑓 (𝑡 ) ,𝑖) = 0 (2.4a)
¥𝜃𝑖 + 𝑏𝜃,𝑖 ¤𝜃𝑖 + 𝜖𝜃 (𝜃𝑖 − 𝜃𝑠 𝑓 (𝑡 ) ,𝑖) = ( ¤𝜃 𝑗 − ¤𝜃𝑖) (2.4b)

where ¥𝑟𝑖 and ¥𝜃𝑖 represent the acceleration of the 𝑖-th herder’s radial position and angle
on the field, respectively, with regards to the center of the containment zone (see Fig.
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Chapter 2. Background

Figure 2.3: Experimental setup of the tabletop shepherding task. The left panel shows
the physical layout of the experimental room, while the right panel displays a labeled
diagram of the game environment, including all relevant game objects in the virtual
experiment setup, such as the participant-controlled sheepdogs (red and blue cubes) and
the sheep (brown dots), which must be herded into the red containment area. Reproduced
from [15] with permission.

ri
θi

rsf(t),i

θsf(t),i

Figure 2.4: Setup of the variables in Eq. 2.4. 𝑟 and 𝜃 are polar coordinates and the
subscripts 𝑖 and 𝑠 𝑓 (𝑡), 𝑖 refer to the 𝑖-th herder agent and its target position respectively.
Refer to Fig. 2.1 for general setup.
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2.4). The term 𝑏𝑟 ¤𝑟𝑖 denotes a damping coefficient for the radial velocity, while 𝜖𝑟 > 0
is a stiffness coefficient, ensuring that the herder’s position 𝑟𝑖 converges towards a target
position 𝑟𝑠 𝑓 (𝑡 ) ,𝑖 . Similarly, 𝑏𝜃,𝑖 ¤𝜃𝑖 represents the damping for the angular velocity, and
𝜖𝜃 is a stiffness coefficient for the orientation, with 𝜃𝑖 converging towards the target
orientation 𝜃𝑠 𝑓 (𝑡 ) ,𝑖 . The right-hand side of equation (2.4b) accounts for the difference
in angular velocities between the 𝑖-th and 𝑗-th herders, promoting coordination in their
movements.

Not only were these equations able to reproduce human data effectively, but artificial
HAs controlled by the resulting model were found to exhibit equivalent, human-like
behavioural performance [16] and could impart the same level of skill training as human
experts [46]. Indeed, when integrated into the control architecture of artificial herder
agents, human participants completing the tabletop herding task with these artificial
herder agents were unable to determine whether they were cooperating with an artificial
agent or with another human herder [16].

Despite the success of Eq. (2.4b) in modelling human tabletop herding, the ability to
generalise this model to first-person herding and navigation contexts remains limited. For
one, individuals do not exhibit oscillatory containment in first-person herding, nor are
the full-body movements produced at the same speed (velocity) as the hand movements
used to control the position of HAs in tabletop herding tasks. Thus, while this research
indicates the robust utility of the DPMP model for capturing human herding behaviour,
a different DPMP model was required for the current work.

2.3 Modeling Decisions in Shepherding
Although much of the above research has provided clear evidence that DPMP models can
effectively capture a wide range of human behaviours, including tabletop and potentially
first-person shepherding behaviour, the effective realisation of these models in complex
task environments depends on the goal or task activation functions that modulate how
they unfold over time [16, 46]. That is, the utility of DPMP models relies not only on
modelling movement patterns but also on modelling the action selection or decision-
making behaviour of human actors completing a given task context. For herding, this
entails modelling the target selection process individuals employ to choose which target
to corral at any given point in time [34, 49].

Thus, while the current thesis demonstrates how (2.3) can be adapted to model the
behavioural trajectories of human-controlled herders in a first-person task, this validation
required uncovering an appropriate target selection (dynamic decision-making) process
or policy. In line with previous research [34, 50, 48], the focus here was on developing
a robust rule-based or heuristic policy that could not only effectively predict and mimic
human target selection decisions but could also be easily integrated into the control
architecture of DPMP-controlled herding agents [33]. However, given the recent success
of reinforcement learning methods in developing optimal, task-specific action decision
models [51, 52, 53, 54], this approach was also utilised in the final study of the thesis[37,
45, 44].
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2.3.1 Heuristic policies
For the table-top herding task, numerous studies (e.g., [34, 48, 55]) have demonstrated
how human players select targets using the following heuristic policy: at any point in time,
pick the target that is (i) furthermost from and (ii) moving away from the containment
zone and (iii) closer to me that my co-herder/player. Moreover, and as detailed above,
that this imply heuristic policy can be integrated together with 2.4 for the development
of artificial herders capable of human level [16, 48, 46].

Motivated by this latter shepherding work, [33] explored a range of different rule-
based, heuristic target selection policies for herding, focusing on a dynamic, position-
based field division to enhance decision-making and herding efficiency. This approach,
termed Dynamic Peer-to-Peer target selection, enabled herder agents to adapt their control
strategies in real-time, effectively corralling both small and large groups of non-flocking
agents with Brownian motion dynamics. By dynamically partitioning the field, the
model streamlined the herding process and allowed agents to efficiently gather and
contain targets. This Dynamic Peer-to-Peer policy was compared against three alternative
strategies—Global Search, Static Area Partitioning, and Dynamic Leader-Follower—
with all on the examined policies highlighting the effectiveness of simple, yet responsive,
position-based heuristic species for multiagent herding tasks (see [33] for strategy details).

A key distinction among the strategies explored in [33], was whether they were
dependent on local vs. global information about TA states. For instance, the Global
Search and Static Area Partitioning policies both required HAs to know the location
of all TAs in the game field or in a pre-defined (static), pre-designated herding area,
respectively. The dynamic target selection strategies (Dynamic Leader-Follower and
Dynamic Peer-to-Peer), however, only required the HAs (players) to know about the
targets within a certain radius of their current (immediate) location. Interestingly, [33]’s
findings indicated that target selection strategies based on local, dynamically updated
information yielded more efficient herding performance than global and static search
area strategies. That is, strategies based on dynamic, local information resulting in
significantly shorter HA path lengths, more expeditious target gathering, and a higher
success rate. As will be seen in this thesis (Chapter 5), dynamically updated rules
unsurprisingly performed better in our first-person herding task as well.

While rule-based approaches like these offer clear and intuitive models for decision-
making in herding tasks, they can be limited by their predefined rules and lack of
adaptability to new or unforeseen scenarios. Reinforcement Learning (RL), on the other
hand, provides a flexible and powerful alternative for modelling decisions. RL algorithms
can learn optimal strategies through trial and error, adapting to dynamic environments
and complex tasks. This adaptability makes RL particularly suited for tasks where the
optimal behaviour is not easily encoded by simple rules, allowing agents to autonomously
discover and refine strategies that maximise their performance in diverse and evolving
contexts.
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Agent

Environment

rewardstate action

Figure 2.5: An illustration of the core structure of Reinforcement Learning, where an
agent interacts with its environment through a continuous cycle of actions and feedback.
The agent selects an action based on the current state of the environment, which responds
by updating its state and providing a reward. This reward guides the agent’s learning,
encouraging actions that maximise long-term rewards, ultimately shaping its strategy for
optimal decision-making in the environment.

2.3.2 Reinforcement Learning policies
Reinforcement learning (RL, [56, 57]) emerged as a powerful tool for modelling decision-
making processes in shepherding tasks [37, 45, 44]. This approach enables agents to
learn optimal strategies through trial and error, leveraging feedback from the environment
to improve performance over time.

RL is a branch of machine learning where an agent learns to make decisions by
performing actions in an environment to achieve a goal. This learning process is charac-
terised by three main components: states, actions, and rewards (see Fig. 2.5). The state
represents the current situation or context the agent is in, which can include information
about the environment, the agent’s position, and other relevant factors. The agent takes
actions based on the current state, in order to transition to new states. After each action,
the agent receives a reward, a numerical value that indicates the immediate benefit of the
action taken. The ultimate objective of the agent is to maximise the cumulative reward
over time, often referred to as the return.

In RL, the agent’s learning process involves exploring the environment (trying new
actions to see their effects) and exploiting its current knowledge (choosing actions that
are known to yield high rewards). To effectively learn the optimal strategy, or policy, the
agent must balance exploration and exploitation. Traditional RL methods, such as Q-
learning [58] and SARSA, use tabular approaches where a value function or action-value
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function is updated based on the rewards received. However, these methods struggle
with large or continuous state-action spaces due to the curse of dimensionality.

Deep reinforcement learning (DRL) addresses these limitations by employing neural
networks to approximate the value function or policy. In DRL, the agent uses deep neural
networks to map states to actions or to predict the value of state-action pairs, enabling
it to handle high-dimensional inputs like images or complex environmental states. One
of the most notable algorithms in this domain is Proximal Policy Optimisation (PPO)
[59]. PPO improves learning stability and efficiency by optimising a surrogate objective
function that ensures the new policy does not deviate excessively from the old policy.
This is achieved through a clipping mechanism that restricts the policy update, making
PPO robust and widely applicable in various complex RL tasks.

Multi-agent reinforcement learning (MARL, [60, 54]) extends the principles of rein-
forcement learning to environments where multiple agents interact, each with their own
goals and strategies. In MARL, agents must not only learn to optimise their individual
rewards but also to coordinate and sometimes compete with other agents in the envi-
ronment. This adds layers of complexity, as agents must account for the actions and
potential strategies of others, leading to a rich set of dynamics and emergent behaviours.
MARL has enabled applications in various domains, including robotics [61], autonomous
driving [62], and complex strategy games [52].

There are numerous compelling studies on the use of RL for modelling decision-
making in joint-action tasks, such as those found in [63, 64] (the game "Overcooked")
and [37, 44, 45] (the tabletop herding task presented above in 2.2.3). In [64], the authors
examined a "human-aware" artificial agent - an AA that was trained with a copy of an
agent resembling a human agent. In RL, an agent must be trained over several (usually
millions) iterations of the simulation environment. In MARL, a few options arise: train
the AA with a copy of itself in a method referred to as Self-Play, or with a copy of a
human-model-based AA (referred to as human-aware or human-sensitive). In [64], it
was found that human agents teamed with the human-aware agent performed better in
the task (the game "Overcooked") than humans teamed with another human.

The feasibility of human-(RL)AA teaming was observed in [37, 44, 45] (the tabletop
herding task), with human-RL(AA) teams exhibiting comparable performance to human-
human teams (trial time, TA travel, and other metrics). However, [46] demonstrated that
human participants still preferred playing with human-sensitive, heuristic, and human-
award DRL agents, compared to self-play MARL agents. Furthermore, these human-
sensitive agents were able to impart game expertise to novice human participants at a
level comparable to that of expert human co-players.

This important distinction between human-sensitive and self-play-trained MARL
agents will reappear later in this thesis, as the aim will be to develop AAs that mimic
human behaviour. As will also be detailed later in this these, however, the integration of
RL with DPMP control strategies offers a promising avenue for enhancing the flexibility
and robustness of herding algorithms, by making them more capable of handling real-
world variability and uncertainty.
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2.4 Discussion
This chapter has highlighted the progress made in modelling human perceptual-motor be-
haviours, particularly within shepherding contexts, through the use of dynamical systems
and computational approaches. By examining the unique characteristics of shepherding
tasks, such as coordinated movement and the control of agents towards a collective goal,
we have seen the effectiveness of applying DPMP models. These models, combined
with rules-based decision policies, have proven adept at capturing key human behaviours
within structured environments, such as tabletop tasks, thereby advancing our under-
standing of human and multi-agent dynamics. However, as detailed, certain limitations
remain when applying these models to more immersive, first-person herding tasks, where
full-body movements and dynamic decision-making processes differ significantly from
simpler, tabletop interactions.

This review has also underscored the need to develop adaptive, context-specific
decision-making policies that can emulate human target selection behaviours. While
traditional heuristic policies can model certain decision patterns effectively, the intro-
duction of reinforcement learning (RL) has allowed for more refined, task-specific action
models that can better account for the complexity of human decision-making in varied
task environments. Incorporating RL-based policies offers a promising avenue for cap-
turing human behaviours more accurately in dynamic, first-person settings, while also
enhancing the robustness of artificial agents in tasks requiring close human-machine
collaboration.

In the subsequent chapters, I will present my work on developing a novel experimental
environment that addresses these limitations. I will begin by detailing the methods used
in designing the experimental platform, data collection, and analytical techniques. This
setup will serve as a foundation for the systematic exploration and validation of both
traditional and RL-based decision-making models within complex, first-person herding
tasks.
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The thesis includes 4 experiments (chapters 4, 5, 6 and 7). Each experiment involved an
assessment of human, human-human team or human-AA team herding behaviour playing
a first-person herding game. In each experiment data was collection on herder and target
agent positions, velocities, and movement trajectories, and analysed to understand the
sequential phases of human herding behaviour, including the action (target) selection
decision making of human herders. The experimental setup provided insights into
how humans adapt their navigation strategies in response to dynamic agent interactions,
contributing to the development of models for human-machine teaming in herding tasks.
Given that the herding task and behavioural assessment measures were similar across all
experiments, I outline these methods and techniques in this this chapter.

3.1 Experimental Paradigm

3.1.1 Apparatus and Task Environment

The herding task required human participants to control an HA, from a first-person point
of view, in order to find and corral one or multiple TAs into a specified containment
zone (circular red area) positioned in the centre of a large game field. Example views
of the herding task environment are displayed in Figure 3.1, including a screenshot of
the first person point of view of the participant (Figure 3.1a), with single target agent
(virtual cow) and red containment zone in view, as well as a bird’s eye view of the
entire task environment (Figure 3.1b). The game was designed using the Unity game
engine (Version 3.3.0, Unity Technologies, San Francisco, USA) and was presented to
participants on a 27-inch computer monitor (1920x1080p).

The game area corresponded to a 120m× 90 m field, fenced off on each side with walls
that prevented the HA and the TAs from leaving the game field. TAs were represented
as spherical cows, each with a horned cubical head and a black and white textured body
(see Figure 3.1a). The walls exerted a repulsive force of 4N on the TAs (of unit mass)
upon collision, thus preventing the TAs from constantly moving along the walls of the
game field. The HA could influence the TA by coming within a radius 𝑑𝑖 = 10m of the
TA, with the TA’s movement dynamics defined as:
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(a) First-person point of view.
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(b) Corresponding bird’s eye view.

Figure 3.1: Task environment. (a) Example of a participant/herder agent’s first-person
view of the game field. The TA (spherical cow with head) and sections of the containment
zone (red) and the exterior walls of the field (grey) are also visible. (b) A birds-eye view
of the game field (not seen by the participant), where the HA is the small red dot and the
TA is the small white dot.

¥x(𝑡) = 𝛼𝑟
x(𝑡) − y(𝑡)
∥x(𝑡) − y(𝑡)∥2

− 𝛽 ¤x(𝑡). (3.1)

Here, x(𝑡) ∈ R2 and y(𝑡) ∈ R2 are the positions of the TA and HA with respect to the
centre of the containment zone, respectively, and the dots above the variables refer to the
standard time derivatives. 𝛽 is the drag coefficient set to 0.2s−1 and 𝛼𝑟 is a constant set to
20m2s−2 when the HA is within the influence area of the TA and 0 otherwise (values set
heuristically to maintain similarity across congruent environments, see [65, 66]). This
results in the TA moving in the direction directly away from the HA approach vector
when the HA enters the influence area. Note that the maximum repulsion the TA could
experience was clamped at 30N. While it had been assumed and implemented in this
study that the TAs would move deterministically in response to the HA’s movements as
in Eq. (3.1), other works [65, 66] consider noisy TA dynamics - and evasive TAs are the
subject of current studies by the authors.

As noted above, the containment zone was specified by a red translucent, non-rigid-
body circular area with a radius of 4m and was always located at the centre of the game
field. Both the TA and the HA could freely pass through (in and out) of the containment
zone without being impeded by the containment zone.

Participants controlled the direction of motion and angular orientation of the HA using
keyboard and mouse controls, respectively similar to a classical first-person shooter game
(e.g., Wolfenstein 3D). Using the W, A, S, and D keys, the HA could move forwards,
left, backwards, and right, respectively. Upon pressing two keys - WD, WA, SD, and SA
- simultaneously, the HA would move diagonally with respect to the forward direction.
The HA’s speed was fixed at 5 m/s. The HA’s orientation could be rotated to the right
or to the left by moving the mouse in a corresponding transverse (left-right) direction.
The HA’s field of view spanned 60° in the vertical direction and 97.6° in the horizontal
direction. Note that the HA’s head movement (camera orientation) was decoupled from
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its body movement (translation) allowing participants to visually explore the environment
without moving around.

3.1.2 Task Description
Participants were required to complete 𝑁 trials, with each experiment containing a
different number of trials (ranging from 20 to 24). For each experiment, the first quarter
(𝑁/4) trials were considered practice and were not included in any analysis. Each initial
condition included different (𝑥, 𝑦) game field positions of the HAs and TAs (never located
within the containment zone), as well as a different initial HA heading angle. For each
trial the HA and TA game field positions, heading angles (defined within regards to the
centre of the game field) and movement velocities were recorded at 50 Hz. Trial order was
randomised across participants in order to avoid extraneous order effects. Importantly,
the first quarter of trials (i.e., practice trials) were randomised separately from the analysis
trials. Note that including the same set of randomised experimental trials (and initial
conditions) enabled an analysis of different participant and AA behaviour across identical
initial conditions.

That is, to address concerns related to third-variable confounding and ensure the
validity of the findings, a randomised trial order was employed to minimise any potential
extraneous variable effects on participants’ behaviour. The experimental design also
included practice trials, which provided participants with an opportunity to familiarise
themselves with the setup and minimise learning effects on the main data collection phase.
Additionally, recruitment was conducted from a relatively homogeneous pool (students
from the same age group), This context limits generalisability to other populations (e.g.,
older adults), which should be considered when interpreting the results.

A game trial started with the HA and TA positioned according to the predetermined
initial conditions and came to an end when the TA was corralled within the containment
zone and its speed was less than .1 m/s. This required the HA to stop influencing the TA
prior to the TA reaching the containment zone, such that the TA slowed down and came
to rest within the containment zone. That is, if the HA continued to influence the TA
up until it entered the containment zone or after it entered the containment zone, the TA
would simply pass through the containment zone without the trial ending.

3.1.3 General procedure
After arriving at the laboratory, participants were seated at a desk with the computer
monitor, keyboard, and mouse used for the study positioned directly in front of them
(refer to Figure 3.2). Participants then read and signed a consent form and completed a
demographic survey. Participants were then informed that the study was investigating and
modelling human navigation and herding behaviour and that they would be completing
a simple herding task that required them to control a virtual HA to locate and corral
one or more TAs into the red containment zone. Participants were not instructed about
how to best corral and herd the TA(s), but were instructed to complete the trials in
the shortest time possible. After participants indicated they understood the task, they
completed all trials in a single session. Given that standard power analysis was not
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Figure 3.2: The experiment setup. The person in the photo is the author of this Thesis.

appropriate for this type of modelling research—where standard hypothesis testing was
not the primary focus—the participant sample size was chosen based on prior studies
examining the dynamics of human herding behaviour (e.g., [34, 16, 46, 67]). The
approach was designed to ensure the reliability of the herding behaviour patterns while
allowing generalisable insights from a moderate number of participants.

3.2 Single herder - single target experiment

3.2.1 Participants
Twenty-four participants from Macquarie University, Sydney, Australia, were recruited
for the study. The participants were between 18 and 36 years of age (M = 20.75, SD
= 3.64). Twenty participants self-identified as female and four as male. Twenty-two
participants were right-handed, one left-handed, and one identified as ambidextrous.
The participants completed all 20 trials in a single session lasting 20 to 25 minutes.
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Chapter 3. Methods

3.2.2 Data Analysis
Pre-processing

In the single herder - single target experiment, participants were required to complete
a total of 𝑁 = 20 trials. As noted above, the first five trials were considered practice
trials and were excluded from further analyses. Six highly erroneous human trajectories
were also manually discarded from analysis, in which the human participant either (i)
continuously overshot the TA or containment zone and had to circle back around (and
around) the field to re-herd the TA, or (ii) was the only participant to circle around the
field in a direction opposite to the rest of participants. These six trials (refer to Fig. 4.3
for an illustration of the data and the outliers) represented only 1.67% of the total number
of experimental trials recorded.

Recall that the aim of this study was to model the navigational trajectories of the
participants as they moved toward, approached, and then incorporated the TA into the
containment area. It is important to note that at the start of a trial, if the TA(s) were not
within their the HA’s initial field of view, participants typically rotated their HA’s head
or body around to perform an initial visual scan for the location of the TA(s). However,
given the above focus of the current work and the trivial nature of this scanning behaviour,
an analysis or model of this behaviour was not considered here.

It is also important to note that at the end of the trial, some participants retreated
away from the containment zone after successfully incorporating the TA(s) into the
containment zone. To exclude this nonherding behaviour from model parametrisation,
the end of the HA’s TA-directed navigational and corral movements was defined as the
last moment in time the HA influenced the last TA herded (or the TA in the single target
experiment).

Train-test split

Out of the 15 experimental trials, the first twelve were chosen as the training set on which
to parameterise our movement model and the last three were chosen as test trials on which
to evaluate the simulated HA against. Given that trials were presented to the participants
in a randomised order, the training and test split was also randomised. Furthermore,
out of the three test trials, it was observed that in one trial approximately half (N=10)
participants took a route tending towards the top half of the game field, and the other
group (N=14) took a route tending towards the bottom. This was because the HA’s initial
position, centre of the containment zone and TA’s initial position were almost perfectly
aligned (angle = 179.5°). This further corroborates the previous observation that the
initial heading angle of the human HA does not play a role in the route selection, as all
24 human HAs had the same initial heading direction. This particular trial was thus split
into two sub-trials corresponding to the top and bottom groups respectively, refer to the
bottom panel of Figure 4.4 for illustrations.
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3.3. Single herder - multiple targets experiment

3.2.3 Mean human trajectories and confidence bounds
Once the post-navigational transients were removed from the participant HA trajectories,
time normalised mean human HA trajectories were generated for each of the 20 initial
conditions. These were obtained by first resampling the participants’ HA (𝑥, 𝑦) trajecto-
ries to 1000 points for each trial and then calculating the mean (𝑥, 𝑦) value at each time
index for the corresponding initial condition.

To assess the variation in human/participant trajectories within the model test set,
a 90% confidence interval around the average human HA trajectory was calculated.
The interval, symmetrically positioned, was determined by multiplying 1.645 times the
standard deviation of point-to-point distances between individual participant trajectories
and the mean human trajectory for each initial condition.

Trajectory measures and comparison analysis

This model, complete with all degrees of freedom defined, was thus able to generate
simulated trajectories. To compare simulations with human data, the errors for individual
humans in the trials corresponding to the test dataset were calculated as the Dynamic
Time Warped (DTW) [68, 69] distances from the mean human trajectory, per trial. A
brief overview of the DTW metric, as well as its suitability for our use case is covered
in Appendix A. These errors were ranked and the 90-th percentile error was compared
with the error of the simulation with respect to the mean human trajectory. The DTW
distance was employed as it allows one to assess the difference between two time-series
trajectories independently of differences in movements speeds or sampling frequency.
This was crucial here as human participants could actually start and stop their movement
while the simulated trajectories were made a constant speed.

Statistical tests

For the single-target study, as well as throughout the thesis, standard statistical tests such
as t-tests and Bayesian Factors analyses were used. These tests identify the evidence
for the alternate or the null hypothesis: in our case, the dissimilarity or similarity of the
simulations from the human data, respectively. Classical independent samples t-tests, as
well as Bayesian Null Hypothesis Significance Testing had been extensively used for this
purpose.

3.3 Single herder - multiple targets experiment
In this multi-target herding experiment, the game setup mirrored that of the single-target
experiment, except that there were three targets instead of one. Participants were also
required to complete five single-target practice trials before beginning the multi-target
trials to familiarise themselves with the game controls and mechanics. These initial
single-target trials were excluded from further analysis.
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3.3.1 Participants and setup
Twenty-one participants from Macquarie University were recruited for the study. The
participants were between 18 and 33 years of age (M = 21.05, SD = 3.54). Sixteen
participants identified as female, four as male, and one as nonbinary or third gender.
Twenty participants were right-handed and one left-handed. The participants completed
all 24 trials in a single session lasting 25 to 30 minutes. None of the data was discarded,
and no pre-processing was performed. The aim of this experiment was to infer the target
selection strategy adopted by human actors in this task context.

Once the target selection strategy was inferred from this first dataset, a new set of
ten participants recruited from the Scuola Superiore Meridionale, Italy, were tasked with
playing the same video game, the only difference being that a different set of initial
conditions was used, with the number of trials unchanged. This second data set was used
to validate the results of the first analysis. Ten participants were recruited, aged between
25 and 32 years (M = 27.80, SD = 2.32). Three participants identified as female and
seven as male. The 10 participants were right-handed.

3.3.2 Data Analysis
The same data pre-processing and trajectory analysis methods employed in 3.2 were
employed for this second experiment.

Target Selection Policy Evaluation

As noted previously, in addition to modelling the movement trajectories of participants
the thesis also explored the target section polices adopted by participants in multi-target
settings (i.e., the order or sequence in which the human herders selected and corralled the
targets). I predominately focused on what heuristic policies best capture human multi-
target herding behaviour (although also DRL policies will be considered in Chapter 7; see
below). This entailed assessing the predictive accuracy of different sets of computational
rules about what target a player would engage with next based on different position and
distance criteria. To test the predictive accuracy of given policy, the following steps were
performed. First, the actual order in which the TAs were corralled by a participant was
extracted from trial data. The target order or sequence exhibited by a participant for a
given trial (set of initial conditions) was then compared to the ordering predicted by a
given policies. If (and only if) the predicted target selection order perfectly matched
the observed ordering, a policy was deemed to have successfully predicted the observed
order. For a given participant, the predictive accuracy of a given policy was examined
across all trials, such that the predictive accuracy of the policy was the percentage of
correct TA sequence predictions over trials (i.e., 0 = zero sequence predictions and 1 =
perfect sequence predictions for all trials).

Given that different polices might predict in the same target selection sequence for
a certain initial condition, percent accuracy scores were calculated in two ways. First,
a non-mutually exclusive score was calculated, which corresponded to the number of
successful trial predictions, independently of whether other policies also predicted the

25



3.4. Multiple human herders - multiple targets experiment

same sequence. This non-mutually exclusive score was then used to rank order the
overall accuracy of policies. Given this rank ordering of polices (from highest or lowest),
the second method involved determine the mutually exclusion accuracy score. This
involved determining the first policy that predicted the observed order for a given trial
and participant from the non-mutually-exclusive rank order (highest to lowest accuracy).
This policy was then deemed predictive, received a score of 1, and the mutually exclusive
accuracy of all other policies for that trial for that participant was assigned a score
of 0. Averaged across trials, this resulted in a predictive accuracy score from 0 to 1,
where higher scores corresponded to a policy that better predicted participants’ behaviour
compared to other policies, including those that might yield the same predicted sequence
for a given set of initial conditions.

Validity of simulated HA behaviour

To further validate the inferred target selection policy, simulations were made by coupling
this policy to the single-target movement model developed in the single-herder single-
target study (see Chapter 4). The simulations were then evaluated against the human
data by first constructing a non-linear (specifically, square root) heat map of the spatial
occurrences of trajectory points in square 5-by-5 m bins. The resulting heat map was
filtered through for bins with a value (obtained through trial-and-error) greater than 10,
to eliminate bins with only single trajectories passing through a bin, to obtain a binary
map.

The percentage of any given trajectory falling through this binary map was calculated
as the number of bins the trajectory passed through in the binary map for a given set
of initial conditions, normalised by the total number of bins assigned to that given
trajectory. This value was called the “binary trace" of a trajectory. The “weighted
trace" of a trajectory was defined as the similarly normalised sum of the values of the
nonlinear heat-map bins through which that trajectory had passed. The traces of each
human participant were calculated and the mean and SD was taken across all trials.
A detailed representation of human trajectories, the simulation, and the weighted and
binary heatmaps is present later in Chapter 5, Fig. 5.2.

3.4 Multiple human herders - multiple targets experi-
ment

3.4.1 Participants
Forty-two participants (22 pairs) were recruited from the undergraduate student cohort
at Macquarie University, Australia and were divided into pairs. Each pair was assigned
to complete an online shepherding task, where they worked collaboratively to shepherd
multiple (three to five) target agents into a central containment zone. The participants
were between 18 and 30 years of age (M = 20.14, SD = 2.13), with 36 who self-identified
as female and six as male. Twenty-seven participants reported that they played video
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games, of which five played on a daily and seven on a weekly basis. All study procedures
were approved by the Macquarie University Human Research Ethics Committee.

3.4.2 Apparatus and task
An illustration of the task is presented in Figure 3.3. The setup was the same as in the
previous tasks, except that there were two herders in this game environment and 3, 4 or
5 target agents.

0°-50° -25° 25° 50°

0°

30°

-30°

-15°

15°

(a) First-person point of view.

0 m-60 m -30 m 30 m 60 m

0 m 

45 m

-45 m

-22.5 m

22.5 m

𝑥

𝑦

(b) Corresponding bird’s eye view.

Figure 3.3: Task environment. (a) Example of a participant/herder agent’s first-person
view of the game field. The TAs (spherical cow with head), the containment zone (red)
and the exterior walls of the field (grey) are visible. The other HA is also visible in
the distance as a red capsule. (b) A birds-eye view of the game field (not seen by the
participant), where the HAs are the small red dots and the TA is the small white dot.

3.4.3 Trial Sequence and Initial Conditions
Each participant first completed five practice trials as a single herder corralling a single
TA (referred to as the single-herder single-target task). Following these trials, participants
then completed 24 trials of the multi-agent herding task in pairs, as two HAs with three,
four of five TAs (i.e., 6 trails for each target number condition). Among the multi-agent
multi-target trials, the initial six were also considered as practice trials (two trials per
target number condition). As with the rest of the experiments in this Thesis, the practise
and the analysis trials were randomised in order, separately, across participants.

27



3.4. Multiple human herders - multiple targets experiment

3.4.4 Procedure
Participants in a pair completed the study in the same laboratory room, but were seated
at separate computer desks, each desk with a computer monitor, keyboard, and a mouse
positioned directly in front of the participant. The desks were positioned so that the
participants in a pair were facing in opposite directions and could not see each other.
Participants were also instructed not to talk during the experiment, with the experimenter
in the room to enforce this instruction.

Upon arriving at the experimental laboratory room, participants first read and signed
an informed consent form, and then completed a short a demographic survey, which
captured their age, gender identification, and how often they played video games. Fol-
lowing this, the experimenter informed the participants they would be playing a herd-
ing (video-game) task, and that they would complete two versions of the task: (1) a
single-herder-single-target and (2) a multi-player-multi-target version. Participants were
instructed that they would be controlling a virtual HA to locate and corral TAs into a
containment zone in the centre of the game field, and were instructed to complete the
task in the shortest time possible. Once participants indicated that they understood the
task and the keyboard and mouse controls, they then completed the 5 trials of the simple
single-herder-single-target task independently (lasting approx. 5-10 minutes). Following
a 5 minutes break, participants completed the 24 trials of the multi-player-multi-target
task, with this lasting approximately 30 to 40 minutes.

It is worth noting that participants were not informed that the single-herder-single
target task and the initial six trials of the multi-agent-multi-target task were practice trials.
In addition, for the multi-player-multi-target task, participants were told that they would
be playing as a team and to work together to corral the targets, but were not given any
instructions about how best to do this. After participants pairs completed all 24 of the
multi-player-multi-target trials, they were informed that the study aimed to model their
herding behaviour and, following any questions they may have had about how and why
this modelling was being done, they were thanked for their participation.

3.4.5 Data Analysis
The same data pre-processing and trajectory analysis (binary trace), methods employed
in sections 3.2 and 3.3 were employed for this third experiment. Given the increased
complexity of the task, (i.e., 2 herders and 3, 4 and 5 targets), the identification and
evaluation of different possible target selection policies, including the predictive power
of the resulting movement model + policy was conducted in a slightly different manner
compared to 3.3. These evaluation and validation methods are detailed in Chapter 6, as
well as the statistical methods of analysis employed.
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3.5 Multi-agent herders - multiple targets experiment
The experimental setup for this experiment mirrored that of the multiple human herders
study in section 3.4, with two significant differences. First, rather than involving two
human participants, the experiment substituted one of the humans with an artificial agent
(AA) whose behaviour was controlled in real-time by either the best navigation + policy
model identified in the previous human-human, multi-herder, multi-target experiment, or
by a DRL-based target selection policy. The latter was, therefore, the second significant
difference. That is, the effectiveness of the navigation + heuristic policy was not only
compared to human-human performance but also bench-marked against target selection
policies developed using cutting-edge DRL methods. This included two DRL agents: (1)
a self-play (SP) DRL agent, which learned a target selection policy by playing alongside
copies of itself; and (2) a "human-aware" DRL AA (referred to as HS-DRL), which
learned a target selection policy by playing (in simulation) alongside the navigation
+ heuristic policy. Details about how these DRL policies (agents) were trained and
developed are provided in Chapter 7.

3.5.1 Participants
Seventy-one Macquarie University students participated in the study in exchange for
course credits required for an undergraduate psychology course. Nine were excluded
for not completing the study (six due to motion sickness, two due to difficulty with task
mechanics, and one due to technological issues). A total of 62 participants completed
the task, each randomly assigned to one of three AA conditions: Heuristic (n = 22),
HS-DRL (𝑛 = 20), or SP-DRL (𝑛 = 20). Participants’ ages ranged from 17–32 (M
= 19.03, SD = 2.58), with 52 females and 10 males. Informed consent was obtained
at the start of sessions, and all participants were naive to their assigned AA condition.
Study procedures were approved by the Macquarie University Human Research Ethics
Committee.

3.5.2 Procedure
The same procedure and trials employed in 3.4 were employed here, with the exception
that participants were informed that they would be playing the game with an AA. No
information about the specifics of the AA were provided to participants. In order to
balance out the assignment of initial conditions to the two-player team, half of the
experimental sessions had the human player start off with the set of initial conditions that
were given to the AA in the other half fo trials (i.e., half of the participants played as
player 1 and the other half played as player 2).
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3.6. Discussion

3.5.3 Data Analysis
Similar data pre-processing, trajectory analysis (binary trace), and policy evaluation
methods employed in 3.4 were employed for this forth experiment. Details about how
these methods were adapted, where necessary, are detailed in Chapter 7, as well as the
statistical methods of analysis employed.

3.6 Discussion
In this section, I have reviewed the general methods, procedures, and data analysis
techniques employed across the four experiments presented in Chapters 4, 5, 6, and
7. In the next chapter, Chapter 4, I will focus on the single-herder, single-target study,
describing the prototypical movement dynamics exhibited by participants when engaging
in the first-person herding task examined here. Importantly, the next chapter will also
detail the DPMP herding navigational model that is foundational to the work presented
in Chapters 5, 6, and 7.

30



4 Single herder, single target
movement dynamics

This chapter focuses on how an individual herder agent can effectively corral a single
target agent. The primary goals of this study included (i) identifying the movement or
navigational trajectories that emerge during the herding process and (ii) to determine
whether these behavioural patterns are consistent across individuals (participants). This
involved analysing how the human-controlled herder agents first approached and then
corralled a target toward the containment zone. By closely examining the herding
trajectories exhibited by participants, the third specific aim of this study was to identify
how (and whether) the Fajen and Warren [5] DPMP navigation model could be adapted
to capture human first-person herding behaviour.

4.1 Modelling Movement Dynamics

4.1.1 Phase Identification
To determine whether the navigational model proposed by Fajen and Warren [5] could be
adapted to capture the behavioural dynamics of human herders completing a first-person
herding task, the movement and target approach strategies of 24 participants who were
required to corral a single target into the containment zone were examined (see section
3.2 for data processing details). Participants completed 20 trials in total (5 practice and
15 experimental).

An analysis of participant data revealed that (human) HA trajectories consisted of two
distinct phases: (i) an approach phase and (ii) a corral phase (see Figure 4.1a). During
the approach phase, participants moved the HA to a position behind the TA with respect
to the containment zone. That is, all participants navigated toward an offset location that
was (on average) a distance 𝑐 away and behind the TA with respect to the containment
zone. For this first phase of behaviour, participants also typically maintained a distance
greater than the HA-TA repulsion distance to ensure that the TA was not pushed further
away from the containment zone.

For the second, corral phase, participants moved directly towards the TA entering
the TA influence region in order to repel (drive) the TA in a (more or less) straight line
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Figure 4.1: (a) Shows the phases of the herding task. The HA first approached the TA
and then switched to corralling it towards the containment zone C. The median angle
at which human HAs first influenced TA was 1.1°. 𝑑𝑖 is the influence radius of the TA,
equal to 10 m. (b) Shows the model variables: C denotes the containment zone, x the
position of the TA, y that of the HA. c is the offset from the TA, 𝑑𝑐 (x, y) the distance
between the offset goal location and the HA. 𝜙 is the HA heading angle and 𝜃G,T ,C the
angles of the offset goal location, TA and C, respectively (measured from the vertical
axis). See the text for more details

towards the containment zone. Importantly, the angle at which the HA began influencing
the TA could be used to differentiate the two phases. Furthermore, the median of these
angles across all participants, measured as the angle between the positional vectors of
the HA and the TA originating from the centre of the containment zone, corresponded
to 1.1° (Figure 4.1a), indicating that the participants transitioned to corralling just before
being perfectly aligned (on a straight line) with the TA and the centre of the containment
zone. Finally, participants’ motion never (except for 1 out of 360 trajectories) passed
through the containment zone (even though they could and were never given instructions
either way).
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Chapter 4. Single herder, single target movement dynamics

4.1.2 Herding navigational model - general formulation
To model the navigational trajectories of the participants during the task, the approach and
corral phases were modelled using a modified version of the navigation model proposed
in [5]. Specifically, assuming constant forward motion with 𝑣(𝑡) = 𝑣0 being the HA
speed, and ¤y the velocity of the HA (refer also to Fig. 2.1),

∥ ¤y∥ = 𝑣(𝑡) = 𝑣(0) = 𝑣0, (4.1)

and an exo-centric reference frame, the heading direction 𝜙 of an HA was modelled (see
Figure 4.1b for setup of variables) as

¥𝜙 = −𝑏 ¤𝜙 + 𝜓G (x, y, 𝜙, 𝜃G) + 𝜓T (x, y, 𝜙, 𝜃T) + 𝜓C (xC , y, 𝜙, 𝜃C) (4.2)

where 𝜃G,T ,C are the angles of the offset goal location, TA and C, respectively (measured
from the vertical axis). As usual, x denotes the position of the TA and y, the position
of the HA. 𝑏 ∈ R+ is a positive damping constant and 𝜓G (x, y, 𝜙, 𝜃G) represents the
attractive coupling between the forward heading direction of the HA and the angular
position of the target offset location. Again, this offset target location corresponded to
the location behind the TA and is the goal location that the HA is attracted to. Moving
towards this offset location, rather than the location of the TA itself, ensured that the HA
does not influence the TA during the approach phase.

To further ensure that the HA does not influence the TA during the approach phase,
the term 𝜓T (x, y, 𝜙, 𝜃T) in Eq. (4.2) provides a repulsive coupling between the HA
heading direction and the TA’s angular position with respect to that heading. This
repulsive torque disappears smoothly as the HA moves around and behind the TA (with
respect to the containment zone) to allow the HA to approach and drive the TA into the
containment zone.

Finally, the term 𝜓C (xC , y, 𝜙, 𝜃C) in Eq. (4.2) creates a repulsive coupling between
the direction of the HA and the centre of the containment zone C, fixed at xC = 0.
This was implemented to ensure that the HA avoids getting too close or entering that
containment zone, similar to what was observed for the human participants. The full
mathematical expressions of each of these terms is presented in the following section.

4.1.3 Herding navigational model - expression details
The term 𝜓G represents the attractive coupling between the HA heading direction and
the angular position of the offset location x𝑐 = x + c, where c := 𝑐 x

∥x∥ . It was defined as

𝜓G (x, y, 𝜙, 𝜃G) := −𝑘𝑔 (𝜙 − 𝜃G) (𝑒−𝑐1𝑑𝑐 (x,y) + 𝑐2), (4.3)

where 𝜃G is the angle of the offset location with respect to the vertical axis centred on
the HA, 𝑘𝑔 reflects the strength at which the HA’s heading direction is attracted towards
the off-set location, 𝑐1 and 𝑐2 are positive constants, and 𝑑𝑐 (x, y) = ∥x + c − y∥ ∈ R+ is
the distance between the offset location and the HA. Note that (𝑒−𝑐1𝑑𝑐 (x,y) + 𝑐2) ensures
that the attractive coupling to the offset target location decays as a function of 𝑑𝑐 (x, y)
but does not completely vanish.
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The term 𝜓T which repels the HA from the TA’s current location, was defined as

𝜓T (x, y, 𝜙, 𝜃T) := 𝜁 (x, y)𝑘𝑜 (𝜙 − 𝜃T)𝑒−𝑐3 |𝜙−𝜃T |𝑒−𝑐4 ∥x−y∥ , (4.4)

where 𝜃T is the angle between the TA and vertical axis centred on the HA, 𝑘𝑜 represents
the strength at which the HA’s heading direction is repelled away from the location of
the TA, and 𝑐3 and 𝑐4 are other positive constants. The exponential modulation terms
ensure that the repulsion decays rapidly as the HA faces away from the TA and as the
two agents get further away. The function 𝜁 (x, y) in Eq. (4.4) is a sigmoidal function
chosen as

𝜁 (x, y) = 1 − 𝜎
(
𝜖 − cos−1

( x · y
∥x∥∥y∥

))
, (4.5)

with 𝜎(𝑧) = 1
1+𝑒−𝑧 , ensuring that the negative coupling term in Eq. (4.4) decays towards

zero as the HA approaches the TA. The parameter 𝜖 was set to 5o (as indicated from the
human trajectory data, at 1.1o the HA first influences the TA) measured from the line
joining the centre of the containment zone and the TA (more simply the angle between
x and y - see Figures 4.1a, 4.1b and 4.2). 𝜁 thus defines when the transition between the
approach phase and the corral phase occurs.

Finally, the term 𝜓C , which repels the HA away from the containment zone C (the
centre of which, xC is stationary at the origin), was defined as

𝜓C (xC , y, 𝜙, 𝜃C) := 𝑘𝑜 (𝜙 − 𝜃C)𝑒−𝑐5 |𝜙−𝜃C |𝑒−𝑐6 ∥xC−y∥ (4.6)

where 𝜃C is the angle between the centre of the containment zone and the vertical axis
centred at the HA, and 𝑐5 and 𝑐6 are positive constants. The term 𝜓C repels the HA away
from the containment zone at all times.

1

1
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∠ HA, TA = 5o ∠ HA, TA = 1.1o

𝜖 − ∠ HA, TA

𝜁 = 1 − 𝜎(𝜖 − ∠(HA, TA))

Figure 4.2: Justification of choice of 𝜖 = 5o. ∠(HA,TA) is the angle between the HA
and the TA, subtended at the centre of the containment zone, equal to cos−1

(
x·y
∥x∥ ∥y∥

)
.

This brings the influence of the target-as-a-repeller term towards 0 as the simulated HA
approaches 1.1°. 𝜖 −∠(HA,TA) is plotted on the 𝑥-axis and the function 𝜁 on the 𝑦-axis.
𝜁 = 0 when ∠(HA,TA) = 5°.
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4.1.4 Model parametrisation and simulations
To parametrise the model on mean human data, a parameter search algorithm was
employed that found the model parameters that minimised the Dynamic Time Warped
(DTW, [68, 69]) distance between the simulated and mean human data. Sequential
Least Squares Quadratic Programming (SLSQP) ([70, 71], see also Appendix A), was
employed to find this minimum. This algorithm was used because it is one of the methods
that consistently finds the optimum for similar problems in a reasonable number of
steps [72]. In particular, the scipy.optimize.minimize(method=‘SLSQP’) Python
function was used. For each trial in the model training set, the heading angle input to the
simulation was taken as the tangent of the mean human trajectory near the HA’s initial
position1. The initial positions of the HA and TA for the simulations corresponded to
the respective inputs to the human HA trials.

The parameters 𝑐1, 𝑐2, 𝑘𝑔, 𝑘𝑜, 𝑐5, and 𝑐6 were heuristically chosen as the parameters
to parametrise, with the other parameters held constant (with their values taken from
[5]). Ten different uniformly randomly chosen initial values for 𝑐1 and 𝑐2 were chosen in
the range (0.1, 0.9) each, with identically chosen exploration limits. The median of the
parameters output by each of these ten runs was taken, and then the mean, median, and
SD thereof across trials. Using these latter median values, the parametrisation algorithm
was run for the parameters 𝑘𝑔 and 𝑘𝑜, which were chosen with initial values in the range
(35, 50) and (150, 220), respectively, with exploration bounds (25, 60) and (150, 250).
This procedure was identically reproduced for 𝑐5 and 𝑐6 with ranges and bounds (0.1, 1)
each.

Once the optimum parameters for each initial condition were chosen, the overall
median values per parameter were then employed for model simulations. The following
parameters values were employed: 𝑐1 = 0.1m−1, 𝑐2 = 0.4, 𝑘𝑔 = 43.4, 𝑘𝑜 = 176.4, 𝑐5 =

0.64, and 𝑐6 = 0.15m−1. 𝑐3 = 1.25 and 𝑐4 = 0.05m−1 were, as mentioned, taken from
[5] and were not needed to be re-parametrised, as after the current parametrisation the
model already resulted in excellent fits. Note that the offset location’s distance from the
TA, 𝑐, was set to 8.5m (since the repulsion distance was 10m) and the damping constant
𝑏 to 3.5 s−1 in the simulations, as these values resulted in good fits.

Using the latter parameters, equation (4.2) was then simulated for each trials (initial
condition), at an integration step of 0.02s, with an HA speed of 5m/s (same as for
participant controlled HAs). For each trial, the average initial position and heading
direction of the human participant across trials and the initial TA position were used
as the initial conditions for the simulation . The resulting simulation trajectories were
pre-processed by discarding their last 20%, since the simulated HA remained in place
while the human HAs withdrew from the TA at the end. The simulations were presented
and compared against human data in the Model Validation section below. Independent
samples and Bayesian Factors t-tests were performed on the trajectory measures across
human and simulation data, for the model validation set.

1tangent between the 200th and 50th point, as that is approximately when the human HA starts moving
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4.1. Modelling Movement Dynamics

Figure 4.3: Model training set. Six dropped trajectory outliers are included in the figure,
but were excluded from the model training. Legend has been used subsequently for all
trajectory plots

4.1.5 Model Validation

In order to determine whether Eq. (4.2) could effectively capture observed human
data (i.e. produce simulated HA movement trajectories equivalent to participant con-
trolled HA movement trajectories), the model was first parameterised using 12 of the
15 experimental trials and then validated (tested) against the remaining three trials. As
detailed previously, model parametrisation (optimisation) was conducted by minimising
the normalised (dynamic time warped or DTW; [69, 68]) distance between simulated
trajectories and the mean human trajectory for each of the 12 parametrisation trials (i.e.,
the corresponding 12 different initial conditions). From the trial optimised parameters,
the median parameter settings were then calculated and used for model validation.

As can be seen in Figures 4.3 and 4.4, these median parameter values produced
simulated trajectories that were equivalent to the average human trajectory for each of
the 12 parametrisation trials and the three test trials, respectively, with regards to the
metrics defined in section 3.2. The trajectories were also representative of the general
distribution of the trajectories observed by the participants for each trial. To further
validate the similarity of the simulated and mean participant trajectories for the three test
trials, four different measures of trajectory similarity were employed (see Table 4.1). The
first two were navigation time, calculated as the time of the approach and corral phase,
and path length, calculated as the length of navigation during the approach and corral
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Chapter 4. Single herder, single target movement dynamics

Figure 4.4: Model vs. data for the test set. Trial ID 13 was the one split into two
sub-trials, as participants were divided according whether they took the top or bottom
route. The shaded area in grey is the SD bound around the mean human trajectory.

phase, without observed differences between the simulated and mean human trajectories
(both 𝑡 (6) > 0.25, 𝑝 > 0.15), with Bayesian factors with null effect Bayesian Factors of
𝐵𝐹10 = .534 and 𝐵𝐹10 = 1.045 for the path length and navigation times, respectively).

The third measure, coverage percentage, captured the percentage of a given trajectory
that was within the 90% confidence interval (see Methods section 3.2.3 for more details)
around the mean human trajectory. Consistent with the simulated trajectory being equiv-
alent to a normative human trajectory, the simulated trajectories had a consistently higher
coverage percentage than the 90th percentile human trajectory for all initial conditions
in the test set (the 90th-percentile human trajectory corresponds to the 90th-percentile
furthest human trajectory from the mean human trajectory as per the DTW distance).
The fourth measure was the distance from DTW (or error) of the simulated trajec-
tories from the mean human trajectories. Again, this error was less for the simulated
trajectories compared to the 90 percentile human trajectory for each test trial, further in-
dicating how the model was able to generate navigational trajectories similar and largely
indistinguishable from those exhibited by the participants.
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4.2. Discussion

Table 4.1: Trajectory characteristics of human participants and simulations for the four
set of initial conditions unseen by the model during parametrisation. Comp. human
denotes comparative human, which is the 90th percentile furthest human trajectory from
the mean human trajectory as per the DTW metric. Sim denotes simulation. The Mean
and SD columns for the first two characteristics are for human data. The last row provides
the mean for all trials.

Path Length [m] Navigation Time [s] Coverage percentage [%] Error from mean [m]

Trial ID Mean SD Sim Mean SD Sim Comp. human Sim Comp. human Sim
14 72.1 16 70.2 17.8 6.2 18.8 29.8 97 5.829 1.866
15 101.1 17.7 108.9 24.8 4.8 37.7 23.2 83.3 6.184 5.255

13 top 119.2 22.7 126.6 28.4 4.9 42.7 26.4 69.9 8.257 7.138
13 bottom 121.4 20 126.1 29.5 5.3 42.5 47.3 70.7 5.571 5.112
Averages 103.5 19.1 108 25.1 5.3 35.4 31.7 80.2 6.46 4.843

4.2 Discussion
In this Chapter, the Single-Herder Single-Target Herding experiment was analysed. An
analysis of participants’ HA movement trajectories revealed that trajectories consisted
of two distinct phases: (i) an approach phase, in which participants moved the HA
to an offset position behind the TA, with respect to the containment zone; and (ii) a
corral phase, where, after reaching the target-offset location, participants moved directly
towards the TA, entering its influence region, to guide the TA in a straight line towards
the containment zone. More importantly, computer simulations revealed that these
behaviours could be captured using an adapted version of the Fajen and Warren [5, 6, 8]
navigation model, in which the HA’s heading direction was simply attracted towards a
8.5 metre offset location positioned behind a to-be-corralled target agent, while treating
the to-be-corralled target agent as an obstacle. The transition between the approach and
corral phases was simply achieved by incorporating a specific function that smoothly
reduced the repulsive force between the target and the HA’s heading direction as the
HA moved around and behind the TA. In the following experiments, this model will be
integrated with other models in progressively more complex herding tasks. In particular,
the next chapter will present experiments that had been conducted in order to discern the
decision policy(s) that individual herders adopt in containing multiple target agents.
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5 Single herder, multiple tar-
get decision dynamics

In the previous chapter, a DPMP model was developed to capture the navigational
movement dynamics of human controlled HAs tasked with corralling with a single TAs.
In this chapter, we will explore the behavioural dynamics of herding multiple targets and
identify the target selection policy (or policies) that human actors appeared to employ
when selecting which TA to corral, choosing from multiple possible TAs.

5.1 Modelling decision dynamics

5.1.1 Definition of policies
Recall that for this experiment, single participants were required to corral three targets
agents into the containment zone to complete a given trial (see 3.3. To identify the actual
target selection strategy adopted by human participants when completing a trial, the
observed TA selection order of a participant for a given trial was compared to the order
that was predicted by various heuristic policies. The heuristic policies examined here
were of four different general types, with each type including several sub-types based
on a distance variable used to distinguish the relative location of targets with respect to
the HA and/or the containment zone. As detailed below, these distances were calculated
as (a) the linear, Euclidean distance, between a target and a HA or the target and the
containment zone, or (b) the angular distance between the target and the HA. Note that
the angular distance between a target and an HA is the angle between their position
vectors, originating from the centre of the containment zone.

1) Initial condition policies - where the entire target selection sequence was defined by
the initial state of the environment prior to herder movement or target engagement. The
following six sub-policies were examined: (i) closest or (ii) furthest linear (Euclidean)
distance from the HA; (iii) closest or (iv) furthest angular distance from HA; and (v)
closest or (vi) furthest linear distance from containment zone.

2) Successive policies - where the first TA that was selected was defined by the initial
state of the environment, but then subsequent target selections are made successively at
the time of target engagement (but before target is corralled into the containment zone).
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5.1. Modelling decision dynamics

Again, six sub-policies were examined: (i) successive closest or (ii) successive furthest
linear (Euclidean) distance from the HA; (iii) successive closest or (iv) successive furthest
angular distance from HA; and (v) successive closest or (vi) successive furthest linear
distance from containment zone.

3) Dynamic policies - similar to successive policies, but subsequent target selections
are made dynamically; i.e., distance evaluations are made when a target agent has been
corralled into the containment zone. The corresponding six sub-policies were examined.
(i) dynamic closest or (ii) dynamic furthest linear (Euclidean) distance from the HA; (iii)
dynamic closest or (iv) dynamic furthest angular distance from HA; and (v) dynamic
closest or (vi) dynamic furthest linear distance from containment zone.

4) Collinear policies - the above policies that also take into account the vicinity (in
terms of the angular distance) between TAs. Specifically, whether two or more TAs were
essentially collinear with regards to containment zone and should therefore be consider
a TA sub-group. As detailed below, based on analysis of the human data this grouping
vicinity corresponded to an angular distance of less than 18.9°. In short, when the angular
distance between TAs was less than this value, the TA that is further from the containment
zone was chosen to be corralled first, otherwise the respective base (initial, successive,
or dynamic) policy was followed according to the respective angular or linear distance
variable employed. This resulted in an additional 18 policies, referred to as collinear
policies; e.g., Initial Collinear Angle/Distance; Successive Collinear Angle/Distance;
etc.

5.1.2 Policy testing
To test the accuracy of the predictions of the 36 defined policies, the actual order in which
the TAs were corralled was extracted from the recorded data, and the non-mutually
exclusive and mutually exclusive prediction scores were calculated for each trial (see
section 3.3.2). Recall that the non-mutually exclusive scores capture how many times a
policy predicts the observed data, ignoring the fact that multiple policies might predict
the same sequence for a given initial condition. In contrast, the mutually exclusive scores
capture how well a given policy predicts the observed behavior to the exclusion of other
policies that perform worse overall. Thus, the mutually exclusive score serves as the best
indicator of which policy best captures the data overall.

5.1.3 Generalisation of movement model to multiple targets
The navigational herding model, Eq. (4.2) from the Single-Target Herding Experiment
was modified as follows to account for multiple TAs:

¥𝜙 = −𝑏 ¤𝜙 + 𝜓G + 𝜓T +
𝑁∑︁
𝑖=1

𝜓O𝑖 (5.1)

where 𝜓G and 𝜓T take the same form as in Eq. (4.2) but apply only to the currently
targeted TA, and

∑𝑁
𝑖=1 𝜓O𝑖 is the sum of repulsive terms each taking the form of 𝜓C from

Eq. (4.2). More specifically, each term 𝜓O𝑖 shares the same form as 𝜓C and
∑𝑁
𝑖=1 𝜓O𝑖
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Chapter 5. Single herder, multiple target decision dynamics

now encompasses not only the containment zone as a repulsive obstacle, but also the
non-targeted TAs as repulsive obstacles. For example, for a non-targeted TA, O 𝑗 at
position x 𝑗 and angle 𝜃O 𝑗

from the vertical,

𝜓O 𝑗
= 𝜓O 𝑗

(x 𝑗 , y, 𝜙, 𝜃O 𝑗
)

= 𝑘𝑜 (𝜙 − 𝜃O 𝑗
)𝑒−𝑐5 |𝜙−𝜃O 𝑗 |𝑒−𝑐6 ∥x 𝑗−y∥ ,

(5.2)

Note that the number of obstacles, 𝑁 , in eq. (5.1) includes the containment zone and the
non targeted TAs. As the containment zone and non-targeted TAs (who total 𝑁𝑇𝐴 − 1,
with 𝑁𝑇𝐴 the total number of TAs) are each modelled by this repulsive form,

𝑁 = 1︸︷︷︸
for the containment zone

+ (𝑁TAs − 1)︸       ︷︷       ︸
non−targeted TAs

(5.3)

The parameters that appear in each of the 𝜓O𝑖 terms were identical to the parameters
for the 𝜓C term in the Single-Target Herding Experiment in Chapter 4. Similarly, all
other parameters in Eq. (5.1) were the same as in Eq. (4.2). The chosen target selection
policy was evaluated once every .25s to determine the currently targeted TA.

5.1.4 Highest-ranked policies
As can be send from an inspection of Table 5.1, the TA selection decisions of participants
were best capture by the collinear policy defined in terms of the closest angular distance
of TAs form the herder; this policy was termed the successive collinear angle or SCA
policy. This policy entailed three heuristic rules. First, participants preferred to select
the TAs that were closest to them in angular rather than linear distance. Recall that the
angular distance between a given TA and HA is measured with respect to the centre
of the containment zone (which was at the origin), whereas the linear distance is the
Euclidean distance on the plane. Second, participants selected successive TAs based on
which TA was closest in angular distance to the previous TA selected. This approach
was contrasted with the selection of TAs on the basis of their angular distance from the
HA’s initial (starting) position. Finally, if two TAs were collinear or almost collinear
with respect to the containment zone (within a certain angular distance from each other,
approximately 18.9°, with respect to the centre of the containment zone), the participants
preferred to select the TA that was further away from the centre of the containment zone,
even if that TA was further away from the HA in terms of angular distance.

The SCA policy was able to predict the TA selection order exhibited by the partici-
pants in 78.8% of the trials. Interestingly, the collinear aspect of this policy meant that
participants minimised game effort, since when two (or potentially three) TAs were close
to collinear with the containment zone, it was more efficient (given the constraints of
the task) for participants to influence the TAs that were furthest from the containment
zone first, and then influence the second furthest TA enroute. That is, participants could
corral both near-collinear TAs simultaneously instead of corralling one all the way to the
containment zone before repeating this step for the following TA(s).
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5.1. Modelling decision dynamics

To validate that SCA captured the majority of the participant’s TA selection behaviour,
other TS policies defined were also tested, with their prediction scores also reported in
Table 5.1. Again, these policies tested a variety of possible rules and combinations of
rules with regard to (1) distances from the HA or from the containment zone, (2) linear
vs. angular distances from the HA, measured from the initial HA position, as well as
successively and dynamically (in real time), and (3) identification of whether the TAs were
nearly collinear with the containment zone or not. A two-phase process - non-mutually
exclusive, then mutually exclusive process - was used to determine whether SCA better
predicted the sequence in which participants corralled TAs compared to other possible
policies. In the first phase, the number of times a policy correctly predicted a participant’s
target order sequence was recorded in a non-exclusive manner. This was done for the 21
participants for the 18 initial conditions, totalling 378 trials across the entire sample. The
precision of each policy was then calculated as a proportion of this total. Given that the
policies were not always mutually exclusive (i.e. several policies would correctly predict
the same sequence depending on the specific herder-target environmental conditions), for
the second phase the target order sequence a participant exhibited on a given trial was then
reclassified in a mutually exclusive, stepwise manner, consistent with the policy order
rank. To do this, the target order sequence for a given trial was checked to see if it was
consistent with the most accurate policy (determined from the non-mutually exclusive
policy analysis). If so, it was assigned to that policy, and no further classification checks
were performed. If not, it was checked against the next policy in the rank until such a
consistent policy was found. A target order sequence was classified as ‘other’ when no
policy was consistent with that sequence.

This analysis revealed that after SCA, only two other policies, the furthest from
the containment zone and Successive Closest Angle from Herder, resulted in mutually
exclusive accuracy scores greater than 3.0%, specifically 6.34% and 3.96%, respec-
tively. Regarding non-mutually exclusive accuracy, the next-best policy was Successive
Collinear Distance, which entails the same three rules as SCA, but is defined in terms
of linear (planar) distance. Another policy, Initial Collinear Angle, differs from SCA in
that the TA order is based on the angular distance of TAs from the HA’s initial position.
Finally, the fourth-best policy, the Successive Closest Angle from Herder, entails the first
two rules of SCA, but not the third collinear rule.

5.1.5 Policy validation
Given the similarity in the top four non-mutually exclusive policies, a subsequent policy
validation experiment was conducted, in which participants completed a specific set
of trials that were designed to better assess whether participants’ TA selections were
most aligned with SCA. Figure 5.1 presents examples from the set of validation initial
conditions that were specifically designed to test whether the TA selections were better
predicted by (i) linear versus angular distance, (ii) successive versus initial angular dis-
tance and (iii) collinear clustering or its absence. A full presentation of initial conditions
used for the validation is available in Appendix B.

As expected, SCA was confirmed as the policy that predicted most of the human
TA selection orders, with a prediction accuracy over the entire set of validation trials
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Chapter 5. Single herder, multiple target decision dynamics

Policy Excl. N Excl. P non-Excl. N non-Excl. P

Successive Collinear Angle 298 0.788360 298 0.788360
Furthest From Containment Zone 24 0.063492 71 0.187831
Successive Closest Angle From Herder 15 0.039683 242 0.640212
Other 10 0.026455 0 0.000000
Successive Furthest Distance From Herder 10 0.026455 33 0.087302
Dynamic Collinear Angle 8 0.021164 165 0.436508
Furthest Distance From Herder 6 0.015873 0 0.000000
Closest Distance From Herder 4 0.010582 128 0.338624
Closest From Containment Zone 2 0.005291 30 0.079365
Dynamic Collinear Distance 1 0.002646 156 0.412698
Successive Closest Distance From Herder 0 0.000000 182 0.481481
Successive Furthest Angle From Herder 0 0.000000 25 0.066138
Dynamic Furthest Distance From Herder 0 0.000000 0 0.000000
Dynamic Closest Angle From Herder 0 0.000000 162 0.428571
Dynamic Furthest Angle From Herder 0 0.000000 0 0.000000
Furthest Angle From Herder 0 0.000000 0 0
Closest Angle From Herder 0 0.000000 0 0
Initial Collinear Angle 0 0.000000 252 0.666667
Initial Collinear Distance 0 0.000000 224 0.592593
Successive Collinear Distance 0 0.000000 278 0.735450
Dynamic Closest Distance From Herder 0 0.000000 147 0.388889

Table 5.1: Total count and proportions of policy evaluations across mutually exclusive
and nonmutually exclusive categories. The total number of TA selection policies for
participants is the number of participants × number of trials = 21 × 18 = 378. Excl. N, is
the total number of trials of mutually exclusive policies tested, Excl. P, is the respective
proportion. Non-Excl. refers to the same but for the non-mutually-exclusive. The top
three policies have been highlighted in bold.
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5.1. Modelling decision dynamics

of 71.7%. With regard to subsets of validation trials, SCA more accurately predicted
participant behaviour compared to all other alternative and competing policies tested. In
the initial conditions testing the angular versus linear distance, the SCA had a score of
78%, while the policy based on successive collinear distance predicted 22% of the trials
(only non-mutually exclusive scores are reported in this subsection). Where successive
TA selection was tested against initial condition TA selection, SCA scored 78%, while
initial condition TA selection scored 12%. Finally, in trials that tested "collinear cluster
identification", SCA (using a collinear cutoff of 18.9°) obtained a score of 35%, while
the successive closest angle predicted only 1% of the trials.

It is important to note that the considerably lower SCA score in this case compared to
its overall score of more than 70% was due to the variation in the participant threshold for
cluster/group identification. In the validation trials where the TAs clearly did not form
a group (the minimum angle between them, subtended in the centre of the containment
zone, was greater than 30°), the participants selected the TA closest in angle 84% of the
time as their choice of the first TA and then preferred the SCA policy when choosing
the second TA to corral 93% of the time. Furthermore, for the tests in which the TAs
potentially formed a group (angle between two or more TAs less than 30° from the
containment zone), the participants chose the TA farthest from the containment zone
within that cluster 71% of the time. These percentages vary slightly after changing this
30° parameter (for example, after setting it to 25°, this last score increases to 74%),
indicating that participants have varying thresholds to classify TAs as part of a group.
To further illustrate this, the accuracy of the SCA was calculated for each participant
in the validation dataset by varying the threshold angle for cluster identification. The
thresholds for most participants to treat TA as a group ranged between 15° and 25°.
These results revealed that while there was this (i.e., between 15° and 25°) variability in
cluster/group identification threshold across participants, the empirically derived value
of 18.9° on average fell within this bound.

5.1.6 Simulations
As a final validation of the SCA policy and Eq. (4.2), artificial HA simulations were
performed, where the architecture of the artificial HA included Eq. (4.2) and the SCA
target selection policy. Simulations were carried out using the same trial conditions used
for the Multi-Target Herding Experiment. Note once again that Eq. (4.2) was slightly
modified so that non-targeted TAs (the TAs that are not currently chased) were treated as
standard obstacles, as per Eq. (5.1).

As expected, our Dynamic Perceptual-Motor Primitive (DPMP) model Eq. (4.2)
combined with the SCA target selection policy generated simulated HA trajectories that
were consistent with the observed human data. The similarity between the simulated
and participant data was determined using weighted and binary trace maps, examples
of which are provided in Figure 5.2. Recall that the weighted and binary trace maps
(defined earlier in section 3.3.2) represent the areas on the movement plane most fre-
quented by participants, with the white area in the binary trace maps approximating the
confidence interval. As can be seen from an inspection of Fig. 5.2 and Table 5.2, the
simulated HA behaviour consistently fell within the prototypical trajectory areas of the
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Chapter 5. Single herder, multiple target decision dynamics

(a) SCD vs SCA (b) Initial vs Successive (c) Cluster identification or not

Figure 5.1: Initial conditions were designed to specifically test leading policies. Each
test would confirm or negate the validity of successive collinear angle (SCA) against
competing subsuming policies. (a) comparing the successive collinear distance and
SCA, (b) compares initial collinear angle and SCA, and (c) examining the relationship
between successive angle and SCA. TAs are labelled A, B, and C, and their distances from
the HA (with initial position in yellow), including the angle of the HA subtended at the
centre of the containment zone, are indicated. The expected order of the TA engagement
according to the competing tested policies is also included for the first two plots. In (c),
it was found that individuals had different thresholds for cluster identification, and so
the expected policy outcome is not included here but is detailed in sub-section 5.1.5 on
Policy Validation.

participants, producing sequences of HA trajectories that overlapped with prototypical
human behaviour 97% of the time. Figures of all model fits and binary and weighted
trace maps are presented in Appendix B.

5.2 Discussion
This Multi-Target Herding experiment involved a more complex herding scenario where
participants were required to corral three targets randomly placed around the game field.
In addition to examining whether the newly proposed DPMP navigation model could be
generalised to a multi-target task context, this experiment aimed to determine the target
selection policy or policies that participants employed to complete the task. An analysis
and subsequent validation experiment of the order in which participants corralled the
targets revealed that participants employed the same target selection policy in almost
80% of the trials. This policy, termed the Successive Collinear Angle (SCA) policy,
involved three heuristic rules. First, participants chose targets closer to them in angular
distance measured with respect to the centre of the containment zone (rather than linear
Euclidean distance). Second, they choose successive TAs nearest in angular distance to
the previously chosen TA. Lastly, if two (or more) TAs were collinear or nearly collinear
with respect to the containment zone (that is, perceived to be part of the same corral
cluster relative to approaching the containment zone), then participants corralled the TA
farther from the containment zone first, even if it was more distant from them in angular
terms. While this experiment had identified and successfully validated the intricacies of

45



5.2. Discussion

Figure 5.2: Plots of Simulations, Human Data, and Evaluation Methods. The first panel
on the left displays both human and simulated trajectories (legend consistent with other 2D
trajectory plots in this article). The upper plot demonstrates the selection of TAs based on
the closest angular distance on a successive basis ("Successive Angle") and the lower plot
illustrates the selection based on angular proximity, chosen successively ("SCA"). The
second panel overlays the simulation onto a non-linear heatmap representing the spatial
frequencies of human trajectories. The third panel features the simulation overlaid on
the binary map derived from the non-linear heatmap. Colorbars indicating the relative
spatial frequencies of the non-linear heatmap and the binary map are included in the final
panel.
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Trial Mean SD Sim

1 0.93 0.06 0.98
2 0.94 0.05 0.98
3 0.90 0.09 0.98
4 0.95 0.05 1.00
5 0.92 0.07 1.00
6 0.93 0.08 0.97
7 0.91 0.08 0.96
8 0.92 0.10 0.98
9 0.93 0.07 1.00
10 0.94 0.05 0.92
11 0.92 0.08 0.93
12 0.94 0.06 0.94
13 0.95 0.07 1.00
14 0.92 0.07 1.00
15 0.93 0.08 1.00
16 0.94 0.08 0.87
17 0.92 0.06 0.88
18 0.94 0.04 0.98

Average 0.93 0.07 0.97

(a) Binary traces

Trial Mean SD Sim

1 23.55 2.06 25.34
2 21.87 1.83 24.34
3 23.38 2.96 25.99
4 24.48 1.97 27.25
5 24.27 1.66 27.59
6 23.38 2.68 25.32
7 22.42 1.65 24.34
8 23.45 2.71 25.24
9 24.31 2.04 26.73
10 23.85 1.85 25.15
11 22.51 2.29 24.40
12 25.70 2.24 27.11
13 24.53 3.11 28.22
14 23.88 2.42 25.48
15 23.54 1.95 27.59
16 24.66 2.91 23.86
17 21.05 1.99 22.11
18 23.92 1.62 25.79

Average 23.60 2.22 25.66

(b) Weighted Traces

Table 5.2: Traces of the human vs. the simulated trajectories. The mean and SD columns
(taken across participants) refer to the human data. Sim refers to simulated trajectories.

multi-target herding, the next chapter will examine its generalisability to multiple human
herders herding additional (≥ 3) TAs.
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6 Multi-player herding

The overall aim of the study presented in this chapter is to examine whether the naviga-
tional and decision model developed so far could be extended to a more complex, multi-
player, multi-target, first-person herding task environment. It is important to recognise
that achieving this aim required identifying the target selection policy that multiple (two)
human players employed to collaboratively corral a group of TAs (𝑁TAs ≥ 3) within a
containment area. Thus, the study also sought to identify the TS policy that could most
accurately capture the action-decision behaviour that human herders employed in a col-
laborative first-person herding task. Of particular interest was whether different human
herders converged on to the same target selection policy. To achieve these aims, the
first-person herding task was adapted to a two-player/HA task, whereby each participant
in a pair controlled a virtual HAs and were required to corral three to five TAs into a
containment zone located within the centre of a game field. An analysis of the participant
TS behaviour was then conducted to identify which TS policy most represented coop-
erative player behaviour. This policy was then combined with the navigational model
developed in this Thesis, to evaluate the effectiveness of the combined movement and
target selection model in simulating the human trajectories. It was expected that the
navigational and decision models would extend to the new task environment, where the
model would capture players’ behaviours within the herding task. Moreover, in line with
prior research modelling human behaviour [16, 5], the expectation for the present study
was that simulated trajectories of the combined movement and target selection model
would closely resemble the human (participant) data.

6.1 Identifying the decision policies

6.1.1 Tested Target Selection Policies
Drawing upon the study in Chapter 5 and other prior research examining human target
selection decisions in herding tasks [33, 15, 50], the present paper examined whether
SCA and four other TS policies (henceforth TSp’s) best captured the decision making
behaviour of participants in the multi-agent-multi-target herding task. All of the policies
examined were deterministic, with rules based on the either the relative Euclidean or
angular distances of the co-herder, the containment zone, and all of the TAs in the herd.
As in the previous study (chapter) , a "global" information approach was employed given
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that a participant could see the positions of all agents simply by moving their HA’s head
around. Note also, that prior to selecting a TA, all of the examined TSp’s accounted for
the TAs’ distances from the participants co-herder (the other HA), such that each policy
included a rule that a participant would select a target only if it were closer to oneself
rather than being closer to the other HA. There was one exception to this rule, if all TAs
were closer to the other HA (the other participants HA), then the policy would choose
the TA furthest from the other HA.

As an illustration of how each policy was implemented, the logic for the SCA
policy is detailed in Table 6.1. The four other policies examined were: Successive
Collinear Distance (SCD) — which was the same as SCA, except that it used Euclidean
distance to successively order TAs rather than angular distance; Successive Angle (SA)
and Successive Distance (SD) — which excluded the collinear rule; and Distance From
Containment Zone (DCZ) — where targets were chosen based on their Euclidean distance
from the containment zone (furthest to closest). Again, all these policies included the
TA-to-other-HA distance rule. All policies also included a 0.25 second delay between
(re)decisions updates and a 1 second delay prior to making a new TA selection decision
after corralling a TA into the containment zone.

These five policies were chosen because consistent with the results of Chapter 5, a
preliminary analysis of the data revealed that participants selected targets successively
(i.e., target-by-target), in contrast with selecting TAs based on their Euclidean or angular
distance from the HA’s initial (starting) position. Moreover, out of the 36 different
policies examined in Chapter 5, these five represented the best alternatives to SCA, with
SCD almost equal in performance to SCA in Chapter 5. That is, again, they all captured
the successive (i.e., target-by-target) manner by which participants made their target
selection decisions, they simply differed with regards to the use of Euclidean vs angular
distance variables and the presence or absence of the Collinear rule.

Table 6.1: Rule logic of the successive collinear angle (SCA) target selection policy

Step Condition Action
1 HA current target = null

(otherwise skip to Step 2)
Select the closest TA to the HA based on the angular distance of TAs from the HA.
– If the selected TA is closest to other-HA, skip this TA and select the next closest TA.

– If all TAs are closer to other-HA, select TA furthest from the other-HA.

– Assign (return) the selected TA as HA’s current target.

2 Check for collinear TAs Identify if other TAs are within 20° of the currently selected TA.
– If no collinear TAs, skip to Step 3, otherwise...

– Order the collinear TAs based on their Euclidean distance to CZ.

– Assign (return) furthest TA from CZ as HA’s current target (resulting in target switching when
corralling collinear TAs).

3 Check for TA containment If HA’s currently selected TA is in the containment zone and stationary, current target = null.

4 Pause and Return Wait 0.25 seconds then return to Step 1.

Note: HA = Herding Agent; TA = Target Agent; CZ = Containment Zone.
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6.2 Generalising the movement model
To generalise the navigational model, Eq. (5.1) required a minor modification to account
for the presence of the additional HA and TAs in the game field. Specifically, the
introduction of another HA brought about the need for avoidance behaviour towards the
other HAs. Similarly, as in Chapter 5, as the TAs were typically corralled individually,
the TAs that were not selected were treated as obstacles, referred to as “non-targeted
targets”.

To adapt the model to these conditions, an obstacle term for the other herding agent
(not oneself) was added into the model. This term mirrored the existing obstacle term
used for the containment zone and for the non-targeted targets. Thus, the resulting model
was of the form,

¥𝜙 = − 𝑏 ¤𝜙 + 𝜓G (x, y, 𝜙, 𝜃G) + 𝜓T (x, y, 𝜙, 𝜃T)

+
𝑁𝑂∑︁
𝑖=1

𝜓O𝑖 (xO𝑖 , y, 𝜙, 𝜃O𝑖 )
(6.1)

where the only difference between model in Eq. (5.1) and this updated model is rep-
resented by the 𝜓O𝑖 term on the right-hand side of Eq. (6.1), which now contains the
additional obstacle coupling term corresponding to the other HA. Indeed, the number of
obstacle terms 𝑁O is given by

𝑁O = 1︸︷︷︸
for the containment zone

+ 𝑁TAs − 1︸    ︷︷    ︸
non−targeted TAs

+ 𝑁HAs − 1︸    ︷︷    ︸
other HAs

(6.2)

All parameters and functional forms for each of the terms in Eq. (6.1) carried
over from the previous single-herder multi-target presented study in Chapter 5. To
decide which TA was currently targeted, the respective TSp was employed. The TSp
determined which terms in Eq. (6.1) were assigned to which TAs - i.e., which of the TAs
were targeted and thus modelled by 𝜓T , and which were non-targeted and modelled by
terms in 𝜓O𝑖 .

6.2.1 Target Selection Policy and Model Validation
To validate the model, Eq. (6.1) and explore the effectiveness of the model for replicating
human-human herding behaviour when coupled with the different TSp’s, simulations of
the model with each of the five TSp’s (i.e., SCA, SCD, SA, SD, and DCZ) were recorded
for each of the initial conditions employed for the experimental trials (i.e., trials 7 to
24). Importantly, all model parameters use for the simulations were the same as those
employed in Chapter 5, including using exactly the same repulsive coupling values
for other-HA avoidance that were used for the avoidance of non-targeted TAs and the
containment zone. These simulations were integrated at a time-step of 0.02 seconds,
with a given TSp determining the current TA used to set the relevant parameters in
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𝜓T (x, y, 𝜙, 𝜃T) in Eq. (6.1) every 0.25 seconds. As noted above, there was also 1
second delay prior to making a new TA selection decision after corralling a TA into the
containment zone.

Given these simulations and the recorded human-human (participant pair) data, we
identified which TSp and model combinations best captured the human data using two
methods.

Target-selection overlap

The first method, resulted in a normalised target-selection overlap score. This method
involved calculating the Dynamic Time Warped (DTW) distance (or error) between time
series of TA engagements of participant and model-controlled (simulated) HAs of over
the course of a trial.

More specifically, a 50Hz time series (corresponding to the 50Hz of data collection
frequency) was extracted for each participant and each model-controlled HA for each
trial, indicating when they were corralling a TA (i.e., within the influence region of a
TA). For every timestep, the presence of a given HA-TA pair engagement was tested and
a 𝑁TA - dimensional binary-encoded vector (that is, the vector elements could be either
‘0’ or ‘1’) was created, with ‘1’ corresponding to the given HA-TA engagement being
present at that particular timestep, and ‘0’ corresponding to no engagement between the
HA-TA pair at that timestep (refer also to Alg. 1). This resulted in a binary (values being
either 0 or 1) time series of length being the length of the trajectory data, and width being
𝑁TA corresponding to each HA-TA pair, thus accounting for all HA-TA pairs.

Next, the DTW distance was calculated between the given human-controlled HA
target selection timeseries and the simulation target selection timeseries. Note that
DTW distances can be calculated between two timeseries of different lengths, but of the
same dimension. Given that the target number and herder number was fixed across the
compared trials, this could be done here.

Then, the DTW distance, being non-normalised, was further normalised to a value
between 0 and 1 (i.e., between 0 and 100%) by dividing the DTW distance by the product
of the lengths of the two tiemseries (human-controlled and simulated). Finally, to obtain
a value of confidence, rather than of error, the normalised DTW distance was subtracted
from 1 to give a value where 1 indicated a perfect target selection match between the two
target selection timeseries, and 0 no match.

This resulted in a target-selection overlap score between 0 and 1 for each (𝐻𝐴sim, 𝑗 ,
𝐻𝐴part,𝑖) combination, with 0 indicating 0% overlap in TA selection decisions and 1
indicating 100% or perfect overlap in time-normalized TA selection decisions. Thus,
higher values reflect a better match between the simulated TSp and the actual TA selection
policy employed by participant-i for a given initial condition.

The target-selection overlap for each (𝐻𝐴sim,j, 𝐻𝐴part,i) pair was calculated for each
initial condition of the experimental trials (i.e., 7 to 24) and the corresponding player
position (i.e., 1 and 2). For each of the five TS policy and model combinations, this
resulted in 21 target-selection overlap scores (21 pairs) for each player position (1 and
2) for each trial. The average across the 21 target-selection overlap scores was then
calculated as the final target-selection overlap score for a given TS policy and model
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Data: 𝐻𝐴𝑠𝑖𝑚, 𝑗 and 𝐻𝐴𝑝𝑎𝑟𝑡,𝑖
Result: value between 0 and 1 indicating no-to-perfect match, respectively
while 𝑡 < len(𝐻𝐴𝑠𝑖𝑚, 𝑗 ) do

binary-encoding-sim(t)← (0,0,. . . ,0) of length 𝑁𝑇𝐴
if 𝐻𝐴𝑠𝑖𝑚, 𝑗 (𝑡) interacted with 𝑇𝐴𝑘 (𝑡) then

binary-encoding-sim(t)𝑘 ← 1
end

end
while 𝑡 < len(𝐻𝐴𝑝𝑎𝑟𝑡,𝑖) do

binary-encoding-part(t)← (0,0,. . . ,0) of length 𝑁𝑇𝐴
if 𝐻𝐴𝑝𝑎𝑟𝑡,𝑖 (𝑡) interacted with 𝑇𝐴𝑘 (𝑡) then

binary-encoding-part(t)𝑘 ← 1
end

end
DTW← DTW(binary-encoding-part, binary-encoding-sim)
normalised DTW← DTW

len(𝐻𝐴𝑠𝑖𝑚, 𝑗 )×len(𝐻𝐴𝑝𝑎𝑟𝑡,𝑖 )
output← 1 − normalised DTW

Algorithm 1: Calculating DTW TSp overlap scores. Binary-encoding-sim and
binary-encoding-part refer to simulation and participant binary encodings respec-
tively.

combination for a given trial and player position. These scores were then averaged across
trials for each target number condition, resulting in a 3 (target condition: 3, 4 and 5) ×
5 (TS policy: SCA, SCD, SA, SD, SCZ) × 2 (player positions) × 21 (participant pairs;
i.e., N) target-selection overlap score data set.

Binary trace overlap

The second method employed to evaluate the degree to which each TS policy and model,
Eq. (6.1), combination best replicated the human-human (participant data) was the same
binary trace overlap method employed in Chapter 5. To calculate this score, weighted
trajectory heat-maps were first generated for each trial from recorded participant data by
applying a non-linear (specifically, square root) filter on the spatial (planar) frequencies
of the participant’s HA trajectories, binned into square 5-by-5 m bins. The bins of the
resulting weighted heat-map or "weighted trace map" was then filtered using a cutoff
value of 10, to eliminate bins where only one or two trajectories passed through that bin
to produce a binary trace map (see Figure 6.1). For a given simulated HA trajectory,
the percentage of the trajectory falling within this binary trace map was then calculated
as the binary trace score for that HA for a given initial condition, with 0 correspond to
no overlap and 1 corresponding to a HA trajectory path the fell completely within the
trajectory area of approximately 90% of human trajectory data; i.e., the binary trace map
represented an approximation of the 90% confidence interval for the human trajectory
data used to generate the map.

To generate a data set appropriate for statistical testing, a kind of surrogate analysis
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Figure 6.1: An example of the participant and simulated HA trajectories and TA engage-
ment (data for trial 7, or the first analysis trial). The left panels display the participant
trajectory data for each player using gray lines, with the red lines corresponding to the
simulated trajectories of Eq. (6.1) using the SCA target selection policy. The green and
orange dots correspond to the TA and player initial positions, respectively. The middle
and right most panels illustrate the weighted and binary trace maps used to determine the
the degree to which the simulated trajectory captured prototypical human behavior, with
the corresponding color-bars on the far right indicating the relative spatial frequencies of
the non-linear weighted and the binary trace maps. Refer to main text and Chapter 5 for
more details on the generation of these maps.
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was performed in which an N = 21 binary trace scores were calculated for each (𝐻𝐴sim,j
for each initial condition of the experimental trials (i.e., 7 to 24) and corresponding player
position (i.e., 1 and 2). This was done by creating 21 binary traces maps for each trial, by
removing the data of one participant pair (1 to 21) for each binary trace map. That is, for
each participant pair a binary trace maps was produced which excluded that pairs data,
with the binary trace overlap score for (𝐻𝐴sim,j calculated for each map. For each of the
five TS policies and model combinations, this resulted in 21 scores (21 simulated HA
pairs) for each player position (1 and 2) for each trial. These scores were then averaged
across the trials for a given target number condition, resulting in a 3 (target condition) ×
5 (TS policies) × 2 (player positions) × 21 (simulated HA pairs) binary trace score data
set.

6.3 Results
Figure 6.2 includes box plots of the target selection overlap scores (top graph) and binary
trace overlaps scores (bottom graph), averaged across participant and trial for each target
number condition. Recall that for both measures, high scores indicating better overlap,
with 1 corresponding to 100% or perfect overlap and 0 corresponding to no overlap at
all. With respect to target selection overlap, this measure can also be interpreted as the
predictive power or normalised accuracy of the corresponding TSp.

In order to determine the degree to which the different TSp’s better predicted the
human target selection decisions and the degree to the Eq. 6.1 + TSp combination
best capture the overall behavioural dynamics of the participant pairs, a mixed-effects
linear model was used to analyse the target selection and binary trace overlap scores
as a function of target number and policy type. As noted above, scores were averaged
across the trials for the same target number condition, such that the model employed for
analysis included fixed effects for target number and policy, as well as their interaction,
and random intercepts of player (1 vs 2; with respect to initial condition) nested within
participant pair (N = 21). The Kenward-Roger approximation was applied to calculate
F-tests for the fixed effects (rather than 𝜒2 tests), ensuring more reliable p-values. Due
to the balanced nature of the data, the degrees of freedom were integer values. All post-
hoc comparisons were conducted with Tukey HSD correction to conserve family-wise
error. The analysis was conducted using R (version 4.0.3) and the following packages:
lme4 (for fitting mixed-effects models), lmerTest (for Type III ANOVA F-tests using the
Kenward-Roger method), and emmeans (for post-hoc pairwise comparisons).

The analysis of target selection overlap revealed a significant main effect of the
target number, F(2, 574) = 216.798, p < 0.001, a significant main effect of policy, F(4,
574) = 9.504, p < 0.001, as well as a significant interaction between target number
and policy, F(8, 574) = 2.762, p < 0.01. Although the difference between the different
TSp’s was rather small (see Figure 6.2, top), consistent with the results of Chapter
5, SCA did overall better predict the participants’ target selection decisions than the
other policies, particularly for the 4 and 5 target conditions. Indeed, post-hoc analysis
examining the differences between the policies for each target number condition revealed
that although the only significant difference for the 3-target condition was between
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Successive Containment Zone and Successive Distance (p = 0.045), SCA better predicted
human target selection decisions than the Successive Angle (p = 0.017) and Successive
Containment Zone (p < 0.001) polices for the 4-target condition, and both Successive
Angle (p < 0.001) and Successive Distance (p < 0.001) for the 5-target condition.

Also consistent with the results of Chapter 5, Successive Collinear Distance or SCD
performed comparably to SCA, with Tukey’s HSD post-hoc revealing no significant
differences between SCD and SCA for any of the target number conditions (all p >
0.861). Furthermore, SCD also significantly outperformed Successive Angle (p = 0.044)
and Successive Containment Zone (p = 0.003) for the 4-target condition, and Successive
Angle (p < 0.001) and Successive Distance (p = 0.025) for the 5-target condition.

The analysis of the binary trace overlap scores also resulted in a significant main
effect of the target number, F(2, 574) = 29.599, p < 0.001, as well as a significant main
effect of policy, F(4, 574) = 224.836, p < 0.001, and a significant interaction between
target number and policy, F(8, 574) = 51.039, p < 0.001. As can be discerned from an
inspection of Figure 6.2 (bottom), post hoc analysis conducted for each target number
condition, revealed that Successive Containment Zone policy resulted in significantly
worse overlap scores compared to SCA and SCD for all target number conditions (all p
< 0.001). The Successful Angle policy was also significantly worse than the SCA and
SCD policies for the 4 and 5 target number conditions (all p < 0.001). Although SCD
and Successive Distance policies did result in slightly higher overlap scores compared to
SCA for the 3 and 4 target conditions, this difference was not significant (all p > .065).
Finally, SCA did result in higher binary trace overlap score for the 5 target conditions,
with this difference being significant with respect to Successive Distance (p < 0.001), but
not significantly higher than SCD (p = .142).

6.4 Discussion
The aim of this experiment was twofold: first, to evaluate whether the single-herder
DPMP navigational model proposed in Chapter 5 could be extended to a more complex,
multiplayer context; and second, to identify the target selection policy employed by
participants in a cooperative multi-herder task. With regard to the latter aim, we sought
to determine whether the Successive Collinear Angle (SCA) target selection policy
identified in the single-herder study in Chapter 5 could also capture the majority of target
selection behaviour in the multiplayer herding task explored here.

Overall, the findings provided clear evidence that the DPMP navigational model
can be generalised to a multi-herder context. Indeed, as can be easily discerned from
an inspection of Figure 6.1 and the figures in Appendix C, Eq. (6.1) could effectively
capture the movement trajectories of participant pairs collaboratively herding 3, 4, or 5
targets. Interestingly, the model was relatively robust across the tested target selection
policies, with the behavioural dynamics of simulated herder agent (HA) trajectories
closely mirroring the topological form of participant trajectories, regardless of the target
selection policy employed. Accordingly, these findings provide further evidence that
goal-directed human movement can be effectively modelled using simple dynamical
principles [5, 7, 9, 38, 16, 2]. Moreover, that the complexity of cooperative human
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behaviour can emerge from real-time agent-environment interactions, underscoring the
self-organising nature of human behaviour in cooperative task settings ([20, 21, 38]).

With regard to the target selection policy employed by participants, the results demon-
strated that the SCA policy was marginally better than the other policies investigated,
particularly as the number of targets to be herded increased. Consistent with the findings
of Chapter 5, the performance of the Successive Collinear Distance (SCD) policy in
predicting participants’ target selection behaviour was comparable to that of the SCA
policy. This similarity is expected given that the difference between these two policies is
simply whether the distance of targets from the herder agent’s (HA) current position is
defined with respect to Euclidean or angular distance, which in most situations leads to
identical predictions. Indeed, the fact that the collinear rule only applied in a subset of the
18 experimental trials also accounts for the small differences in predictive performance
between the Successive Angle and Successive Distance policies compared to SCA and
SCD, particularly in the three-target condition where the collinear rule never applied.

Nevertheless, consistent with previous work (Chapter 5, [50]) including research
exploring cooperative herding in tabletop games [34, 16, 48, 46] and larger-scale contexts
[49, 66], the results of this experiment do suggest the majority of participants employed
a target selection policy at least similar to SCA (or SCD). Of course, one way this
can be tested further is to examine the behavioural dynamics of human participants
completing the multiplayer herding game employed here alongside an HA controlled via
Eq. (6.1) and the SCA policy. Accordingly, the experiment in the following chapter was
designed to assess whether the combined DPMP and SCA herding model simulated in
this experiment could effectively control the behavioural dynamics of an artificial herder
within a human-machine teaming context.
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Figure 6.2: Box plots of target selection overlap (top) and binary trace overlap (bottom)
for the different TSp as a function of target number.
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7 Multi-agent herding: human-
autonomy teaming

7.1 Introduction
In Chapter 6, we observed that a rule-based or heuristic approach effectively simulated
human decision-making in the first-person shepherding task. The SCA policy for the
multi-TA first-person task closely mirrored the behaviour of human HAs in tabletop
(bird’s-eye view) herding tasks [16, 48], and it aligned with the optimal strategy for herd-
ing both small and large groups [33]. The simplicity of the SCA and heuristic methods
in general is beneficial when integrated with DPMPs into AA control systems, as these
policies are fully deterministic and produce predictable, human-like decisions that sup-
port reciprocity in Human-Machine Interaction (HMI) [73]. However, heuristic policies
represent simplified versions of human decision-making processes, often excluding the
subtle dynamics, adaptability, and randomness characteristic of human behaviour [33].
Moreover, their task-specific nature limits their applicability to new or increasingly com-
plex tasks [34], where even small shifts in task dynamics may require time-consuming
rederivation of the heuristics [74].

7.1.1 Deep Reinforcement Learning for Target-Selection Action
Decisions

To address the limitations of heuristic policies, an increasing body of research has
been investigating whether machine learning methods, particularly Deep Reinforcement
Learning (DRL), can more effectively modulate DPMP models for AA control. DRL
is increasingly used to derive target-selection policies for guiding DPMPs [37, 45, 46],
offering greater flexibility compared to the rigidity of heuristic-based AAs [75]. Rather
than relying on human-inspired rules, DRL methods are designed to discover optimal
action-decision policies through autonomous self-learning processes [76], often resulting
in DRL AAs that achieve equal or better task performance compared to humans [77].

A deep neural network (DNN) is embedded in the DRL architecture, which learns
iteratively via reinforcement learning, through trial and error, to form a behavioural
policy (i.e., state-action mapping) that maximises expected task rewards [57]. As pow-
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erful function approximators, DNNs allow DRL AAs to make decisions based on high-
dimensional data [78, 79]. Crucially, DRL AAs can learn to perform tasks via self-play,
without needing prior knowledge of task dynamics [53, 80]. In DRL, self-play (SP)
refers to the process where an AA trains by playing alongside copies of itself, without
direct human involvement.

Despite surpassing expert human performance in complex, competitive video games,
DRL AAs often adopt decision strategies that differ significantly from those used by
humans [52]. While excelling in SP tasks, this discrepancy in strategies compared to
humans frequently leads to poor HMI and suboptimal performance [37, 64], which is
a key aim of AI development [81]. Furthermore, human collaborators often perceive
SP-DRL AAs as unpredictable and uncooperative [46]. Effective multi-agent human
collaboration requires anticipation of intentions and reciprocity of behaviours between
co-actors [82], yet SP-DRL AAs assume their human counterparts will make decisions
that maximise positive outcomes in the same way, resulting in misunderstandings and
ineffective HMI [64, 46].

To address HMI challenges with SP-DRL AAs, human-sensitive DRL strategies
have been proposed [64, 63]. In these strategies, DRL AAs are trained alongside a
human proxy AA controlled by either a heuristic or computational model. Given that
DRL training typically requires millions of time steps, real-time human involvement is
impractical. However, using the game Overcooked, [64] demonstrated that a "human-
aware" DRL AA (referred to as HS-DRL), trained with a human behavioural clone,
adapted better to human co-actors compared to SP-DRL trained AAs.

Although a similar HS-DRL approach has been suggested for determining action-
decision policies for DPMP-controlled AAs [37], it remains unclear whether this leads
to better HMI than SP-DRL or heuristic approaches [46]. Furthermore, no research
has yet compared SP-DRL and HS-DRL target-selection policies for DPMP HAs in a
first-person, multiplayer shepherding task. Addressing this gap was one of the objectives
of this study.

7.1.2 Current Study
Building on previous chapters, the present study aimed to: (1) validate the SCA policy
for DPMP herder control and assess its generality in a human-AA dyadic context, and
(2) benchmark its effectiveness by comparing the performance of AAs with target-
selection decisions determined by the SCA (Heuristic), SP-DRL, or HS-DRL policies.
Although their action decisions varied, all AAs shared the same DPMP action dynamics
(movement) model. Additionally, this study sought to determine whether the HS-DRL
AA led to better human-AA performance than the SP-DRL AA, and whether it more
closely resembled the performance of the Heuristic AA.

To achieve these objectives, human-AA dyads performed a multiplayer shepherding
task, where they corralled three to five TAs into a containment zone. Using a between-
subjects design, participants co-herded with either the Heuristic, SP-DRL, or HS-DRL
AAs. To evaluate the effects of the three policies on HMI, the selection decisions
and movement trajectories of both AAs and participants were analysed. Decision and
trajectory measures were compared to typical human behaviour from human-human
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dyads performing the same task (Chapter 6), with scores quantifying how closely an
HA’s behaviour aligned with typical human herding.

Since the SCA was human-derived, the Heuristic AA was hypothesised to best capture
human herding dynamics, displaying the highest decision and trajectory overlap scores,
thereby validating the SCA for DPMP-HA control in HMI. Regarding the DRL AAs,
the HS-DRL AA was expected to show greater overlap scores (i.e., more human-like)
than the SP-DRL AA. Similarly, participants co-herding with the Heuristic AA were
predicted to exhibit behaviour more aligned with human-human baseline data compared
to participants paired with HS-DRL and SP-DRL AAs, reflecting the Heuristic AA’s
ability to effectively embody a human co-herder (i.e., co-actor) for enhanced HMI.
Finally, participants co-herding with the HS-DRL AA were also expected to display
more human-like behaviour than those paired with the SP-DRL AA.

7.2 Artificial Agents for Target-Selection Policies
The three AA types formed dyads with participants, creating three independent condi-
tions. It is important to note that although all AAs shared the same DPMP navigation
model, they varied in their target-selection policies. Each policy output was assigned a
TA identification (ID) number (i.e., 1, 2, 3, 4, 5, with 0 indicating no TA).

7.2.1 Heuristic (SCA) Artificial Agent
The Heuristic AA is a rule-based agent whose target-selection decisions were governed
by the Successive Collinear Angle (SCA) policy described earlier in Chapter 6. This AA
first selected TAs based on angular distance and then selected successive TAs based on
their proximity in angular distance to the previous target. If two TAs were collinear with
respect to the containment zone, the AA would select the furthest TA first, then influence
the second one while en route. In this study, the SCA policy was adapted according to
the other HA’s location. Specifically, the Heuristic AA would choose a TA farther from
the participants but closer to itself.

7.2.2 Self-Play-DRL Artificial Agent (SP-DRL)
Self-Play-DRL AAs were created using a fully connected multilayer perceptron (MLP)
neural network (2 hidden layers, 128 nodes each), trained with the Proximal Policy Opti-
misation (PPO) algorithm, selected for its strong learning capability and high efficiency
in state-action-reward processes. The inputs to the MLP included the positions (𝑥, 𝑦) and
velocities of all HAs and TAs. Rewards were updated at each environment step with the
following structure to guide behaviour: a small negative reward per timestep (-0.0001),
a positive reward for successfully containing a TA (0.6 divided by the number of TAs
in a trial), and a negative reward for a TA escaping the containment zone (-1.2 divided
by the number of TAs in a trial). This reward system encouraged efficient herding by
discouraging delays, emphasising TA containment, and enforcing strict monitoring to
prevent escapes. Ten SP-DRL AAs were trained using 20 parallel environment copies
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on CPUs running at 40× regular speed, over 150 million environment time steps. During
the simulations, the AAs trained by engaging in self-play with another DRL AA, without
any human data. At the end of training, the two best-performing SP-DRL AAs were
selected based on their task completion times across all trial sets.

7.2.3 Human-Sensitive-DRL Artificial Agent (HS-DRL)
Human-Sensitive-DRL AAs utilised the same MLP architecture as the SP-DRL AAs,
with selection policies refined using PPO and the same reward structure. Ten HS-DRL
AAs were trained over 150 million environment steps, with the two best-performing AAs
chosen for this study. The key difference from the SP-DRL AAs is that HS-DRL AAs
employed hybrid-DRL training to develop target-selection policies [37]. In this case,
HS-DRL AAs trained with a Heuristic AA rather than using self-play with another DRL
AA.

7.3 Results
Separate mixed-design ANOVAs were conducted to investigate differences in target-
selection (decision) and binary trace (trajectory) overlap scores for both AAs and partic-
ipants. Note that the overlap scores had been calculated in the same manner as detailed
in previous chapters, in particular in sections 6.2.1 and 6.2.1. For the AA analyses, the
between-subjects independent variable (IV) was AA Type, which included the Heuris-
tic, HS-DRL, and SP-DRL AAs. For the participant analyses, the corresponding IV
was AA-Coherder, referring to the participant conditions, where they co-herded with
either the Heuristic, HS-DRL, or SP-DRL AAs. Additionally, the previous Chapter 6’s
study on shepherding with human-human dyads found that participants’ trajectory scores
varied based on the number of TAs in a trial, with trials involving an even number of
TAs yielding higher trajectory scores. Consequently, TA-Num (the number of TAs in
the trials) was included as a repeated factor with three levels: 3 TA, 4 TA, and 5 TA.
Stata version 18 was employed for all statistical analyses. The nominal alpha level was
set at 𝛼 = .05. Post-hoc pairwise comparisons were adjusted using the Bonferroni cor-
rection. Assumptions of normality and homoscedasticity were evaluated by inspecting
histograms, Q-Q plots, and Residual vs. Fitted (RVF) plots, respectively. Mauchly’s test
was used to assess sphericity for the TA-Num variable, and any assumption violations
were addressed through transformations and corrections as required.
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7.3.1 Artificial Agents on Target-Selection Decision Overlap
A 3 (AA-Type) × 3 (TA-Num) mixed-design ANOVA was conducted to evaluate dif-
ferences in target-selection decision overlap scores among the Heuristic, HS-DRL, and
SP-DRL AAs. The assumptions of normality and homoscedasticity were satisfied. How-
ever, Mauchly’s test indicated a violation of sphericity for the TA-Num effect, 𝜒2(2) =
12.98, p = .525. As a result, the Greenhouse-Geisser correction was applied (𝜖 = 0.976).

After applying the correction, the ANOVA revealed significant main effects for AA-
Type, 𝐹 (2, 177) = 33.46, p < .001, 𝜂2

𝑝 = .274, and TA-Num, 𝐹 (2, 177) = 197.57,
p < .001, 𝜂2

𝑝 = .691. There was also a significant AA-Type × TA-Num interaction,
𝐹 (4, 177) = 8.34, p < .001, 𝜂2

𝑝 = .159. To further investigate this interaction, simple
effects were analysed at each TA-Num level.

For 3 TA trials, there were no significant differences in decision overlap scores
between AAs, 𝐹 (2, 59) = 2.93, p = .061. However, there was a significant effect of
AA-Type for 4 TA trials, 𝐹 (2, 59) = 4.79, p = .012, with post-hoc comparisons showing
that the Heuristic AA had higher scores than the SP-DRL AA (contrast = .015, p = .010).
The HS-DRL AA did not significantly differ from the Heuristic AA (contrast = -.009,
p = .203), nor from the SP-DRL AA (contrast = .006, p = .736). The AA-Type effect
was also significant for 5 TA trials, 𝐹 (2, 59) = 29.99, p < .001. Bonferroni-adjusted
comparisons indicated that the Heuristic AA showed higher decision overlap compared
to both the HS-DRL AA (contrast = .029, p < .001) and the SP-DRL AA (contrast =
.051, p < .001). Additionally, the HS-DRL AA exhibited higher decision overlap than the
SP-DRL AA (contrast = .022, p = .005). As depicted in Figure 4 (Panel A), these results
overall support the hypothesis that the Heuristic AA’s decisions would more closely align
with typical human TA selections compared to the DRL AAs. The expectation that the
HS-DRL AA would display more human-like decisions than the SP-DRL AA was also
confirmed for 5 TA trials.

7.3.2 Artificial Agents on Binary Trace Overlap
Differences in binary trace overlap scores among the AAs were analysed using a 3
(AA-Type) × 3 (TA-Num) mixed-design ANOVA. The assumptions of normality, ho-
moscedasticity, and sphericity (p = .151) were satisfied. The ANOVA revealed signifi-
cant main effects of AA-Type, 𝐹 (2, 177) = 64.18, p < .001, 𝜂2

𝑝 = .420, and TA-Num,
𝐹 (2, 177) = 3.29, p = .040, 𝜂2

𝑝 = .036. However, the interaction was not significant,
𝐹 (4, 177) = 1.59, p = .179, 𝜂2

𝑝 = .035.
As expected, Bonferroni-adjusted comparisons indicated that the Heuristic AA ex-

hibited significantly higher trajectory overlap scores compared to both the HS-DRL
(contrast = .071, p < .001) and SP-DRL AAs (contrast = .121, p < .001). Additionally,
the HS-DRL AA scored significantly higher than the SP-DRL AA (contrast = .049, p <
.001). As illustrated in Figure 4 (Panel B), these findings supported the hypothesis that
the Heuristic AA would demonstrate the most human-aligned trajectories, followed by
the HS-DRL and SP-DRL AAs.

Post-hoc comparisons for the TA-Num effect revealed that trajectory overlap scores
were significantly higher in 3 TA trials compared to 4 TA trials (contrast = .028, p =
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.034). There were no significant differences between 5 TA trials and 3 TA (contrast =

.013, p = .731) or 4 TA trials (contrast = -.015, p = .497).

7.3.3 Participants on Target-Selection Decision Overlap
A 3 (AA-Coherder) × 3 (TA-Num) mixed-design ANOVA was performed to evaluate
differences in target-selection decision overlap scores among participants co-herding
with the Heuristic, HS-DRL, and SP-DRL AAs. The assumption of normality was
satisfied, but visual inspection of the Residual vs. Fitted (RVF) plot indicated moderate
heteroscedasticity. To address this, a log transformation was applied, which improved the
consistency of residuals. The transformation did not affect the omnibus test F-statistics,
effect sizes, or p-values, but changes were observed in the pairwise comparisons. Given
the heteroscedasticity present in the raw data, the log-transformed results are considered
more reliable and are reported here. Sphericity was violated, 𝜒2(2) = 14.36, p = .001, so
the Greenhouse-Geisser correction (𝜖 = 0.866) was applied.

After correction, the ANOVA revealed significant main effects for AA-Coherder,
𝐹 (2, 177) = 4.17, 𝑝 = .017, 𝜂2

𝑝 = .045, and TA-Num, 𝐹 (2, 177) = 85.14, p < .001,
𝜂2
𝑝 = .490. However, the AA-Coherder × TA-Num interaction was not significant,
𝐹 (4, 177) = 1.61, 𝑝 = .183, 𝜂2

𝑝 = .035.
As shown in Figure 7.1 (Panel C), pairwise comparisons revealed that participants co-

herding with the HS-DRL AA had significantly lower decision overlap scores compared
to those co-herding with the Heuristic AA (contrast = 0.216, 𝑝 = .044) and SP-DRL
AA (contrast = 0.023, 𝑝 = .034). Moreover, there were no significant differences in
decision scores between participants co-herding with the Heuristic AA and those with
the SP-DRL AA (contrast = -.001, 𝑝 > 1.00), contrary to the hypothesis that participant
decisions would differ when co-herding with DRL AAs compared to the Heuristic AA.

Not surprisingly, post-hoc comparisons for TA-Num showed that 3 TA trials resulted
in significantly higher decision overlap scores compared to 4 TA trials (contrast = 0.022,
𝑝 = .045). Additionally, 5 TA trials produced significantly lower overlap scores compared
to both 3 TA trials (contrast = -0.109, 𝑝 < .001) and 4 TA trials (contrast = -0.087,
𝑝 < .001). In other words, as the number of TAs increased, target-selection decisions
became more variable across HAs.

7.3.4 Participants on Binary Trace Overlap
Finally, differences in participants’ binary trace overlap scores were analyzed using a 3
(AA-Coherder) × 3 (TA-Num) mixed-design ANOVA. The assumptions of normality,
homoscedasticity, and sphericity (𝑝 = .454) were satisfied. The ANOVA revealed no
significant main effects for AA-Coherder, 𝐹 (2, 177) = 1.80, 𝑝 = .168, 𝜂2

𝑝 = .020, or for
TA-Num, 𝐹 (2, 177) = 3.00, 𝑝 = .052, 𝜂2

𝑝 = .033, nor a significant interaction effect,
𝐹 (4, 177) = 1.31, 𝑝 = .270, 𝜂2

𝑝 = .029. To further assess these null effects, a Bayesian
repeated-measures ANOVA was performed using JASP version 0.19, following [83]’s
guidelines. Moderate evidence was found supporting the null AA-Coherder effect (BF10
= 0.255) and anecdotal evidence for the null interaction effect (BF10 = 0.392). There was
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Figure 7.1: Line Graphs depicting average AA and Participant decision and trajectory
overlap scores. Panel A and Panel B depict the decision and trajectory overlap scores for
the different AAs, for 3 TA, 4 TA, and 5 TA trial conditions, respectively. Panel C and
Panel D shows the decision and trajectory overlap scores for participants as a function of
TA and coherder condition. The error bars represent ±1 standard error.
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anecdotal evidence against the null TA-Num effect (BF10 = 2.408). No further analyses
were conducted.

7.4 Conclusion
The present study investigated the effects of heuristic, HS-DRL, and SP-DRL target-
selection policies in AAs collaborating with humans during a first-person shepherding
task. The results demonstrated that the Heuristic AA, guided by the SCA policy, most
accurately captured human behaviour (refer to figures in Appendix D for a 2D repre-
sentation of human-human team and human-AA team trajectories with the AA being
the heuristic agent), validating the effectiveness of human-derived heuristics for DPMP
control. Additionally, participants displayed strong adaptability across the AA condi-
tions, suggesting that DRL-based policies can achieve comparable HMI. These findings
emphasise the potential of integrating heuristics within a dynamical systems framework
to create AAs that exhibit human-like behaviours and strategies, with promising appli-
cations for synthetic coactors in real-world human-AA teams. Future research should
investigate alternative machine learning models and consider increasing task complexity
to further refine AA design. As human-AA interactions become more common in daily
life, optimising AAs and their dynamic behaviour will be crucial for ensuring effective
and seamless multi-agent collaboration in increasingly complex environments.
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8 Conclusions and future work

This thesis explored the dynamics of human decision-making and movement in first-
person herding tasks, combining human data collection experiments, computational
modelling, and machine learning techniques to tackle the inherent complexities of multi-
agent coordination. This research provided new insights into how humans control target
agents and manage their movement within defined spaces. It also led to the development
of artificial agents (AAs) capable of collaboratively completing the first-person herding
task alongside human agents.

The initial chapters framed the herding problem within a broader context, highlighting
its relevance in multi-agent systems and human-machine interaction. In particular,
prior work [22, 23, 24, 25] had addressed importing herding models into the control
architecture of robots for autonomous target agent control, often in complex (dynamic or
cluttered) environments. This background on herding dynamics laid the groundwork for
understanding how multi-agent herders (humans and machine) navigate and coordinate
in environments where targets need to be contained efficiently.

The experimental work with human participants was a central focus. The studies
revealed distinct patterns of behaviour in how individuals approached and managed
target agents. Specifically, participants’ navigational trajectories often involved two key
phases: an approach phase, where they aligned themselves with the target, and a corral
phase, where they influenced the target’s movement toward a desired location. These
findings were consistent across different task scenarios, demonstrating the robustness (or
consistency) of human strategies in first-person herding tasks. A Dynamical Perceptual-
Motor Primitive (DPMP) model was derived by modifying and fine-tuning an existing
human navigational model [5]. By modelling how participants approached and corralled
targets, the simulations mirrored human performance.

One of the key findings of the thesis was the effectiveness of simple strategies
in modelling human decision making. As with [16, 33], it was demonstrated in this
thesis that human-inspired models incorporating rules-based (heuristic) decision policies
into DPMP models worked best in reproducing human behaviour. This was seen to
easily generalise to multi-person, and then, multi-agent herding. The most appropriate
heuristic decision model was itself derived from a detailed study of the single-herder,
multiple-target scenario, with further validation through follow-up experiments in that
same context.

This thesis also explored whether heuristic-based decision models, when integrated
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into artificial agents, could replicate human-like teamwork in human-agent interactions.
Similar to work conducted in simpler environments (such as [44, 45]), computational
models like those based on reinforcement learning are generally more adaptable than
heuristic-based models to new or unfamiliar environments. However, as had been
demonstrated in [46, 44] and in this thesis, in multi-agent herding tasks where hu-
man and artificial agents collaborate, Deep Reinforcement Learning (DRL) agents were
less effective at replicating human-like behaviours than heuristic models. This suggests
that, at least in our representative task context, simpler strategies may better capture
complex human behaviours.

8.1 Limitations
However, several challenges and potential limitations were identified. One significant
shortcoming was the inability of the models to capture more nuanced aspects of human
movement, such as the start-and-stop behaviours observed in some participants. Another
limitation of our models is the lack of ability to model different humans’ decisions in
under the same experimental conditions (or trial). This distribution of human decisions
could be addressed through a stochastic (or random) decision model and had not been
detailed here. Another major challenge of this work is to implement the models into real-
world (or physical) robots, an avenue that had not been tested but would have significant
applications-based implications.

8.2 Future work
Future work in this domain can, more immediately, include studying the Desert Herding
task [66, 65], which incorporate more complex TA dynamics and a much larger (500m
x 500m) playing field. Other target selection policy modelling techniques can also be
explored, such as using Supervised Machine Learning techniques, such as was performed
in [55]. In this work [55], the authors had employed Long Short-Term Memory (LSTM)
networks to predict the target selection decisions of human herders in the tabletop herd-
ing task (section 2.2.3), alongside using explainable AI to identify what features most
influenced the decision model’s predictions. Additional next steps could include training
two Deep Reinforcement Learning Neural Networks - one for the navigational dynamics
(hence replacing the navigational DPMP model) the other for decision dynamics (similar
to what had been performed in this thesis) and combining the two to generate a model-free
artificial agent, for comparison with the other AAs developed in this thesis.

However, on a more general scale, the importance of promoting the task to real-
like-like scenarios cannot be understated. Work can be done in the first instance in
implementing the models into controlled robotic environments (for e.g., [84]), and then
in uncontrolled real-world environments. It will be very promising to implement these
algorithms and models into the design architecture of real robots collaborating alongside
humans, in search-and-rescue operations and in general, collaborative perceptual-motor
tasks.
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8.3 Conclusion
In conclusion, this thesis provided substantial contributions to the understanding of hu-
man decision-making and control strategies in first-person herding tasks. The experimen-
tal findings, coupled with the development of computational models, advance the field
of multi-agent coordination and offer new possibilities for improving human-machine
collaboration. While there are areas for further refinement, the insights gained from this
research lay a strong foundation for future exploration in both theoretical modelling and
practical applications of human-agent systems.
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Appendix A

Error metrics and parametrisa-
tion algorithm used

A.1 Introduction and Motivation
The distance between two points on a plane can be calculated based on the chosen
metric, such as the Euclidean or curvilinear metric for flat or curved spaces, respectively.
Distances between two trajectories in flat spaces may be calculated naively by summing
the pairwise Euclidean distances for each corresponding point in the two trajectories.
However, problems arise when the trajectories are sampled at different frequencies or
have different lengths. In this document, we consider various distance measures between
two trajectories.

Once a distance measure is chosen, minimization algorithms can be used with this
distance measure as a loss function to solve the optimization problem of ensuring that
the simulated model trajectory is as close to the real trajectory as possible.

A.2 Hausdorff Distance
Named after Felix Hausdorff (1868-1942), the Hausdorff distance 𝐻 (𝐴, 𝐵) between two
finite sets of points 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑁 } and 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑀 } is defined as in [85]
and [86]:

𝐻 (𝐴, 𝐵) = max(ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)) (A.1)

where

ℎ(𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

𝑑 (𝑎, 𝑏) (A.2)

with 𝑑 (·, ·) representing the Euclidean distance between two points.
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The Hausdorff distance measures the degree of dissimilarity between two trajectories
as the larger of the maxima of the closest distances between the trajectories, considering
each trajectory in turn.

A limitation of this distance measure is that it is unordered—it does not take into
account the temporal evolution of trajectories. Thus, a modified distance, the Fréchet
distance, was developed, inspired by the Hausdorff distance.

A.3 Fréchet Distance
The Fréchet distance 𝐹 (𝐴, 𝐵) for 𝐴 and 𝐵 as above is defined in [87] as:

𝐹 (𝐴, 𝐵) = inf
𝛼,𝛽

max
𝑡∈[0,1]

𝑑 (𝐴(𝛼(𝑡)), 𝐵(𝛽(𝑡))) (A.3)

where 𝑑 is defined as before, and 𝛼 and 𝛽 are reparametrizations of 𝐴 and 𝐵,
respectively. The Fréchet distance can be thought of as the minimum leash length needed
to connect pairwise points that co-move along the parameter 𝑡 across the two trajectories.

The limitation of both the Hausdorff and Fréchet distances is that they focus only
on the extreme distances between the trajectories. In other words, they consider a
single maximum distance and do not take into account all pairwise distances between
trajectories. To capture all dissimilarities between two trajectories more comprehensively,
we consider a different similarity measure: the dynamic time-warped distance.

A.4 Dynamic Time-Warped Distance
The Dynamic Time-Warped (DTW) distance, as presented in [88] and [89], provides a
way to measure the similarity between two time series sampled at different time intervals
or frequencies. This algorithm takes as input the sets of points 𝐴 and 𝐵 as above
and constructs the distance matrix 𝐶 ∈ R𝑁×𝑀 , which represents all pairwise distances
between 𝐴 and 𝐵. It finds the alignment path that runs through the lowest distances in the
matrix, aligning the differently sampled trajectories to minimize the running Euclidean
distance across corresponding points. The output 𝐷𝑇𝑊 (𝐴, 𝐵) is the sum of distances
along this alignment path.

Formally, the matrix 𝐶 has elements

𝐶𝑖, 𝑗 = ∥𝑎𝑖 − 𝑏 𝑗 ∥, 𝑖 ∈ [1 : 𝑁], 𝑗 ∈ [1 : 𝑀] (A.4)

The alignment path 𝑝 is a sequence of indices 𝑝1, 𝑝2, . . . , 𝑝𝐾 with 𝑝𝑙 = (𝑝𝑖 , 𝑝 𝑗 ) ∈
[1 : 𝑁] × [1 : 𝑀] for 𝑙 = [1 : 𝐾] that satisfies certain conditions:

1. Boundary: 𝑝1 = (1, 1) and 𝑝𝐾 = (𝑁, 𝑀)

2. Monotonicity: The indices 𝑝𝑖, 𝑗 are strictly non-decreasing, where 𝑝𝑘 = (𝑝𝑖 , 𝑝 𝑗 ),
preserving the time-ordering of the points.

3. Step size: Indices do not jump by more than one.
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The indices 𝑝𝑖, 𝑗 correspond to the trajectory points, allowing for repetitions. These
repetitions are key to DTW, as they enable the alignment of paths sampled at different
frequencies. The DTW distance is calculated as the minimal distance along these indices:

𝐷𝑇𝑊 (𝐴, 𝐵) = min
𝑝
𝑐𝑝 (𝐴, 𝐵) (A.5)

with

𝑐𝑝 (𝐴, 𝐵) =
𝐾∑︁
𝑘=1

𝐶𝑝𝑘 (A.6)

A.5 Test Cases
In this section, we generate different curves and evaluate how the metrics discussed above
perform. Figure A.1 shows three sets of lines, and Figure A.2 shows two sets of curves.
The distances between the y-intercepts of the parallel lines are 5, and the difference in
radii of the concentric circles is 2.

(a) Two parallel lines with
zero slope

(b) Two parallel lines with
non-zero slope (c) Two non-parallel lines

Figure A.1: Simple lines

(a) Two concentric circular arcs (b) Two non-concentric circular arcs

Figure A.2: Simple curves
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Table A.1 reports the values for the different similarity measures applied to the various
test cases.

Description 𝐻 (·, ·) 𝐹 (·, ·) 𝐷𝑇𝑊 (·, ·)
Two parallel lines with zero slope 5 5 500
Two parallel lines with non-zero
slope 5 5 408.76

Two non-parallel lines 15 15 533.28
Two concentric circular arcs 2 2 200
Two non-concentric circular arcs 3.41 3.41 308.33

Table A.1: Table of distance measures

We conclude that DTW is the most informative measure, as it decreases when the
curves move closer to each other. In the case of parallel lines with non-zero slope, the
Hausdorff and Fréchet distances do not exhibit the expected behavior.

A.6 Parametrization Technique - SLSQP
Our parametrization algorithm, Sequential Least Squares Quadratic Programming (SLSQP),
was introduced in 1988 by Dieter Kraft ([90], [91]). The problem statement is as follows:

Consider minimizing a function 𝑓 (𝑥) in 𝑛 dimensions:

min
𝑥∈R

𝑓 (𝑥) (A.7)

subject to the constraints

𝑔 𝑗 (𝑥) = 0, 𝑗 = 1, . . . , 𝑚𝑒 (A.8)

𝑔 𝑗 (𝑥) ≥ 0, 𝑗 = 𝑚𝑒+1, . . . , 𝑚 (A.9)

𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢 (A.10)

where

𝑓 : R𝑛 → R (A.11)

and

𝑔 : R𝑛 → R𝑚 (A.12)

are both continuous and differentiable.
The algorithm is described as follows: Given an initial set of parameters 𝑥 (0) , the

(𝑘 + 1)-th iteration produces the following set of parameters:
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𝑥 (𝑘+1) = 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) (A.13)

where 𝛼 (𝑘 ) is the step size at iteration 𝑘 , and 𝑑 (𝑘 ) is the corresponding search
direction. The search direction is determined using quadratic programming. First, we
define the Lagrangian:

𝐿 (𝑥, 𝜆) = 𝑓 (𝑥) −
𝑚∑︁
𝑗=1
𝜆 𝑗𝑔 𝑗 (𝑥) (A.14)

with the Lagrange multipliers 𝜆. The quadratic programming (QP) algorithm then
seeks to minimize:

QP : min
𝑑∈R𝑛

1
2
𝑑𝑇𝐵 (𝑘 )𝑑 + ∇ 𝑓 (𝑥 (𝑘 ) )𝑑 (A.15)

subject to the constraints:

∇𝑔 𝑗 (𝑥 (𝑘 ) )𝑑 + 𝑔 𝑗 (𝑥 (𝑘 ) ) = 0, 𝑗 = 1, . . . , 𝑚𝑒 (A.16)

and

∇𝑔 𝑗 (𝑥 (𝑘 ) )𝑑 + 𝑔 𝑗 (𝑥 (𝑘 ) ) ≥ 0, 𝑗 = 𝑚𝑒 + 1, . . . , 𝑚 (A.17)

where

𝐵 := ∇2
𝑥𝑥𝐿 (𝑥 (𝑘 ) , 𝜆) (A.18)

In simple terms, with the appropriate step size, the algorithm moves in the parameter
space to minimize the Lagrangian—i.e., it minimizes the function 𝑓 subject to constraints
while considering changes up to second-order, hence the name quadratic programming.
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Appendix B

Single herder - multiple targets

Figures B.1, B.2, and B.3 include trajectory, weighted, and binary trace maps for all
trials used in the Multi-Target Herding Experiment. The panels on the left display
the human trajectories (in black), the initial positions of the TAs (in green), the initial
positions of the HAs (in yellow), and the simulation (in red). The middle panels show
the artificial HA simulation overlaid on the nonlinear heatmap generated by binning the
spatial frequencies of human trajectories. The nonlinear heatmap’s colours represent
relative spatial frequency, with yellow indicating higher frequencies (hotter) and blue
indicating lower frequencies (colder). The panels on the right show the simulation
overlaid on the binary map extracted from the nonlinear heatmap by filtering values
higher than a specified threshold.

As detailed in the main text, to further validate that the Successive Collinear Angle
(SCA) policy best captured the participants’ target selection decisions in the Multi-Target
Herding Experiment, a second set of initial conditions were designed and tested. To
test the successive collinear angle versus the successive collinear distance, the initial
conditions in Figure B.4 were used. To test whether TA selection was best defined by the
initial location (starting position) of the HA or as a successive function of the angular
distance of the TA, the initial conditions in Figure B.5 were used. Finally, Figure B.6
corresponds to the initial conditions used to test whether the participants used collinear,
cluster identification or not. The initial position of the HA is in yellow and that of the
TA is in green. TAs are labelled A, B, and C, and their distances from the HA, as well
as the angle from the HA subtended at the centre of the containment zone, are denoted.

The link to the online repository containing the simulation and analysis code, as well
as the experimental data collection and simulation builds can be found through the link
here.
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Figure B.1: Multi-Target Herding Experiment: Trials 1 through 6
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Appendix B. Single herder - multiple targets

R
elative spatial frequency

Figure B.2: Multi-Target Herding Experiment: Trials 7 through 12
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Figure B.3: Multi-Target Herding Experiment: Trials 13 through 18
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Appendix B. Single herder - multiple targets

Figure B.4: Multi-Target Herding Experiment Validation trials in which successive
collinear distance (SCD) vs successive collinear angle (SCA) was tested. SCD had a
score of 22% and SCA, 78% (scores not mutually exclusive). Distances and angles
between the HA and the respective TA are also denoted (with angles measured from the
centre of the containment zone), along with the expected prediction of SCD vs. SCA.

.
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Figure B.5: Multi-Target Herding Experiment Validation trials in which initial vs suc-
cessive collinear angle was tested. The former had a score of 12% and the latter, 78%
(scores nonmutually exclusive). The expected predictions of these two campaigns are
also noted.
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Appendix B. Single herder - multiple targets

Figure B.6: Multi-Target Herding Experiment Validation trials in which successive angle
versus successive collinear angle was tested. There was always a pair of TAs (A and
B) with angles close to 10°, 15°, 20° and 25° (denoted in the figures). As varying
participants had varying thresholds, an analysis of the scores has been presented in the
main text, and the corresponding predictions have been omitted from the figures.
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Appendix C

Multiple human herders - mul-
tiple targets

The figures in this Appendix represent the simulated trajectories overlaid on the human-
human team data, alongside the simulations overlaid on the weighted and binary heatmaps.
The panels on the left display the human trajectories (in black), the initial positions of
the TAs (in green), the initial positions of the HAs (in yellow), and the simulation
(in red). The middle panels show the artificial HA simulation overlaid on the nonlin-
ear heatmap generated by binning the spatial frequencies of human trajectories. The
nonlinear heatmap’s colours represent relative spatial frequency, with yellow indicating
higher frequencies (hotter) and blue indicating lower frequencies (colder). The panels
on the right show the simulation overlaid on the binary map extracted from the nonlinear
heatmap by filtering values higher than a specified threshold.
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Appendix C. Multiple human herders - multiple targets
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Appendix C. Multiple human herders - multiple targets
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Appendix C. Multiple human herders - multiple targets
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Appendix C. Multiple human herders - multiple targets
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Appendix D

Human-AA team trajectories

The figures in this appendix represent the data from the human-human team (in black)
and the data from the human-AA team, with the AA being the heuristic agent (in blue),
As half of the participants were assigned to the initial conditions assigned to the AA in the
other half, and vice versa, there are four panels per trial condition: player 1 human/AA
and player 2 AA/human. Players 1 and 2 play simultaneously, collaborating with each
other to complete the herding task. One may note the variability in the human data across
both the human-human as well as the human-AA teams, while the AA picks up on the
human trends. This has been quantified in the main text.
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Appendix D. Human-AA team trajectories
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Appendix D. Human-AA team trajectories
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Appendix D. Human-AA team trajectories
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Appendix D. Human-AA team trajectories
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