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Abstract

The aim of this Doctoral Thesis is the development of new methodologies at the inter-
section of machine learning (ML) and numerical analysis to address key challenges in
modeling, understanding, and forecasting the emergent dynamics of complex systems.
In particular, by integrating these two fields, we overcome key limitations of traditional
and deep learning approaches linked to the “curse of dimensionality” in their training,
even for simple problems. The core focus of the Thesis lies in solving both forward and
inverse problems, while also providing new theoretical and practical contributions to the
mathematical foundations of ML.

A critical aspect of this research focuses on the advancement of ML methodologies
to study complex systems, thus dealing with the so-called “curse of dimensionality”. In
particular, we focus on Random Projection Neural Networks (RPNNs), which relax the
“curse of dimensionality” and the challenges in finding global optima for non-convex
training process of fully-trained Feedforward Neural Networks (FNNs) for dynamical
systems. Throughout this Thesis, we have theoretically analyzed the RPNNs for function
approximation, demonstrating their exponential convergence rate for smooth functions.
The Thesis has two branches: the theoretical advances and their applications for complex
systems. Of course, these two are in dialectic relation. Applications drive the devel-
opment of new methods, and new methods provide tools for understanding better the
behavior of such systems, and so forth and so on.

From the theoretical point of view, we investigated and developed various methods for
sampling the internal weights and biases of RPNNs, employing both function-agnostic
and function-informed approaches while developing a geometric-based sampling al-
gorithm for high-dimensional problems. Furthermore, we have introduced Random
Projection-based Operator Networks (RandONets), which extend the use of random
projections for Deep Operator Networks (DeepONets). We theoretically prove for Ran-
dONets an extension of the Chen and Chen’s theorem of universal approximation for
operators and empirically demonstrate that randomized and a priori fixed embeddings of
both branch and trunk hidden layers can outperform traditional fully-trained DeepONets
counterparts by several orders of magnitude in both computational time and numerical
accuracy.

The above enhance our arsenal to solve both the forward and inverse problem in
complex systems. The forward problem focuses on the numerical solution of differential
equations (DEs) for complex systems and their associated challenging issues, such as
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those involving stiff systems and multiscale simulations, as well as analyzing system sta-
bility through bifurcation analysis, deeply connected with the analysis of multi-stability
phenomena. We rigorously evaluate ML methods, particularly Physics-Informed RPNNs
(PIRPNNs), against established numerical techniques. Our results show that parsimo-
niously designed PIRPNNs can match or outperform traditional numerical methods and
deep learning approaches in accuracy and efficiency, especially in handling stiff systems
and sharp gradients. In these forward problems, by exploiting analytical derivatives of
the network, solving with RPNNs reduces to finding least-squares solutions of nonlinear
algebraic equations. To enhance training efficiency, we propose replacing computa-
tionally expensive gradient-based algorithms with Newton’s method, combined with
specialized techniques such as Moore-Penrose pseudo-inverses based on singular value
decomposition (SVD) or Complete Orthogonal Decomposition (COD). We stress, that
the developing of such novel algorithms and training strategies, employing for example
random projections, aim to enhance the reliability and efficiency of ML for complex sys-
tems modeling. For illustration purposes, we have applied these PIRPNNs to stationary
Partial Differential Equations (PDEs), including the 1D and 2D Liouville-Bratu-Gelfand
and viscous Burgers’ equations with mixed boundary conditions. In addition, we coupled
this solution with arc-length continuation in the RPNN weight space to construct accu-
rate bifurcation diagrams. In these experiments, we outperformed established techniques,
such as finite difference (FD) and finite element methods (FEM), for the first time. Our
research also extended to solving Ordinary Differential Equations (ODEs) and Differen-
tial Algebraic Equations (DAEs), including various stiff benchmark problems and stiff
PDEs, including van der Pol ODEs, Robertson DAEs, Belousov-Zhabotinsky ODEs and
Allen-Cahn phase field PDE discretized with FD. Notably, we surpassed a professional
Matlab solver, ode15s, which is based on the backward differentiation formula (BDF) of
variable order and variable step sizes.

On the other hand, the solution of the inverse problem (reconstruction of differential
equations from data), is crucial for the parameter identification, system reconstruction,
and discovering hidden dynamics in complex systems. Inverse problems often pose
additional challenges, such as ill-posedness and sensitivity to noise, requiring robust
and efficient approaches. The primary goal here is to infer underlying properties of
the differential equations from observed data—specifically, identifying the macroscopic
governing laws of emergent behaviors. This involves constructing ML-assisted surrogate
models in the form of DEs, possibly identifying the presence of stochastic terms (SDEs),
partial derivatives (PDEs), and/or integral features (IPDEs). To achieve this, a significant
challenge lies in identifying coarse-grained observables that accurately describe the
emergent behavior. This step is critical for capturing the key dynamics of the system while
reducing the complexity and high-dimensionality of the underlying data. We employ
manifold learning techniques to systematically extract relevant macroscopic observables
from high-dimensional data, ensuring that these observables are both significant and
representative of the system’s emergent behavior. Based on the selected significant
coarse-scale observables, we learn the right-hand-side (RHS) of the effective DEs using
two ML schemes, namely FNNs and RPNNs. To handle challenges related to dominant
spatial features, we combine these neural architectures with fixed convolutional layers
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based on finite difference stencils, which can provide new feature candidates. We further
refine the selection of these features through parsimonious Diffusion Maps (DMaps)
and Automatic Relevance Determination (ARD) with Gaussian Processes (GPs). We
contrast the advantages and limitations of different ML surrogate models, emphasizing the
importance of developing task-oriented models. Specifically, we highlight the trade-off
between the computational endeavor in learning infinite-dimensional PDEs operators and
the simplicity of low-dimensional targeted surrogates, in the form of SDEs, particularly
for tasks such as identifying tipping points (bifurcation points in dynamical systems)
and performing rare event analysis in their neighborhood. In particular, for this task,
we utilize both brute force Monte Carlo simulations and statistical mechanics-based
methods. For the task-oriented SDE surrogate, we employ two coupled FNNs inspired
by the Euler-Maruyama scheme to simultaneously learn the drift and diffusivity functions
of an underlying Wiener process, based on the assumption that the data follow such a
process. Notably, these low-dimensional surrogates accelerate rare event analysis by
three orders of magnitude compared to full-scale microscopic simulations. This thesis
presents three illustrative case studies for inverse problems: (i) the spatial propagation
of action potentials in unmyelinated neurons, modeled by the FitzHugh-Nagumo PDEs,
reconstructed from a mesoscopic lattice Boltzmann description; (ii) an event-driven
agent-based model capturing mimesis-driven behavior; and (iii) the spread of an epidemic
on an Erdős-Rényi network.

Ultimately, this thesis contributes to the advancement of both ML and numeri-
cal analysis by providing novel insights into their synergistic potential. The proposed
methodologies offer promising avenues for tackling complex systems challenges across
a wide range of applications, such as neuroscience, finance, and epidemiology.
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1 Introduction

This Thesis aims at the development of new methods at the intersection of scientific
machine learning (ML) and numerical analysis to address and tackle challenging forward
and inverse problems arising in complex systems. The main focus is how one can
efficiently relax the “curse of dimensionality" in complex systems numerical analysis
and in the training of artificial neural networks.

I highlight that part of this research was conducted in collaboration with Johns
Hopkins University, Baltimore, MD, USA. During three visits spanning a total of one year
(March-July 2022, February-July 2023, January 2024 and November 2024), I contributed
to research within the Chemical and Biomolecular Engineering department under the
guidance of Professor Ioannis G. Kevrekidis. This experience and the resulting research
efforts have significantly enriched the overall research project.

In the next sections of the introduction, we will present the motivation, the relevant
theoretical background and context of this research, specifically examining complex
systems and their importance in modern science. We will discuss how ML and big data
have transformed the study and analysis of complex systems and their emergent behavior.
Next, we will review the state-of-the-art approaches and key challenges in solving forward
and inverse problems in complex systems. Furthermore, we will outline the key research
questions and objectives that have guided this thesis. Finally, this chapter will conclude
by summarizing the contributions of this work and its importance in the context of risk
and complexity.

1.1 Motivation and context of the research

In this section, we introduce the main motivation and context of the research, focusing on
the intersection between complexity, multiscale modeling, and machine learning (ML)
to tackle the “curse of dimensionality”. We highlight the importance of understanding
emergent phenomena in large-scale complex systems and the role of reduced-order
modeling for dealing with the “curse of dimensionality" when performing numerical
analysis tasks for these phenomena. This is an open and challenging problem for both the
forward and inverse problems. In fact, two Nobel Prizes in Physics in 2021 and 2024 were
awarded for keystone works in complexity and machine learning for better understanding
complex phenomena, and/or discovering new physical laws and emerging patterns from
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data. The focus and main aim of this Thesis is the development of novel “intelligently-
designed" ML methods with the aid of tailor-made numerical analysis tools, to deal with
some aspects of the “curse of dimensionality" when trying to learn (the inverse problem)
from high-fidelity simulators, and solve differential equations (DEs), with the use of ML.
The achievement of such a goal opens the path to faster and more accurate solution of
both inverse and forward problems.

1.1.1 A brief journey into complexity
Complex systems are ubiquitous in nature and society, captivating scientists with their
intricate and emergent behaviors. Ranging, from the neural networks of the brain [1, 2]
to the dynamics of financial markets [3, 4, 5, 6], and from climate patterns [7, 8, 9, 10]
to the spread of epidemics [11, 12, 13], these systems exhibit complex patterns that
emerge from the interactions of numerous components/units. Understanding, modeling,
analyzing and forecasting these emergent phenomena from large-scale spatio-temporal
data represent some of the most significant challenges in contemporary science [14, 15,
16, 17, 18, 19, 20, 21, 22, 23].

While complex systems are composed of interacting units (e.g., particles, agents)
[14, 16], their collective behavior often transcends the properties of their individual
constituents, emerging at different spatio-temporal scales than those governing the indi-
vidual interactions. Unlike simpler systems, a reductionist approach, decomposing the
system into its subunits, often fails to capture the holistic dynamics. This fundamental
principle, eloquently expressed by Aristotle’s saying “the whole is greater than the sum
of its parts", has been a central theme in both philosophical and scientific exploration
for centuries. Pioneering works, such as Erwin Schrödinger’s exploration of life as
a complex physical system in “What is Life? The physical aspect of the living cell"
[24], and Ilya Prigogine’s Nobel Prize-winning research on the role of irreversibility in
self-organizing systems [25], have laid the groundwork for our contemporary understand-
ing. Prigogine’s concept of dissipative structures, emerging from far-from-equilibrium
dynamics, underscored the importance of nonlinear interactions and time’s evolution
in generating complex patterns [25]. Ultimately, the profound importance of research
in complex systems was underscored by the 2021 Nobel Prize in Physics, awarded to
Syukuro Manabe, Klaus Hasselmann, and Giorgio Parisi. Parisi’s contribution focused
on the theory of disordered systems, glassy states and fluctuations in complex multi-
scale phenomena [15]. This recognition solidified complex systems as a pivotal field
in physics, demanding innovative approaches to unravel the intricate interplay between
components and emergent properties.

Complex systems typically manifest multiscale phenomena, leading to unexpected
and often abrupt shifts in the dominant macroscopic or mesoscopic patterns [16, 18, 19,
20, 21, 22, 23]. Interactions at the individualistic scale can trigger cascading effects,
amplifying perturbations across the scales and propelling the system towards a new,
potentially irreversible state. These catastrophic transitions, commonly associated with
tipping points [18, 21, 26, 8, 23, 9], are more likely to occur near bifurcation points in
the system’s emergent dynamics. Determining the frequency and probability of these
transitions, as well as identifying the precursors to tipping points, is crucial for managing
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and mitigating risks in various real-world applications. Such unpredictable, qualitatively
different critical changes often arise from the multistable emergent behavior inherent
to complex systems, where multiple emergent stable and unstable states or attractors
coexist. These attractors can represent desirable or undesirable conditions, as exemplified
by Earth’s historical climate states, including glacial and interglacial periods, as well as
the potential for a “hothouse Earth" scenario [7, 10]. In real world applications, even
seemingly permanent states, such as the crystalline structure of diamond1, are ultimately
transient, subject to the relentless march of time and the influence of environmental
factors. The metastability of complex systems, characterized by long periods of stability
punctuated by abrupt transitions, often triggered by rare events, highlights the nearly
unpredictable nature of these systems and the challenges associated with forecasting
their future behavior [17, 22, 23]. Fluctuations in system parameters and the presence
of noise can erode potential barriers separating different states, facilitating transitions to
alternative regimes [23].

1.1.2 The Low-Dimensional Manifold Hypothesis in Multiscale Model-
ing of Emergent Phenomena

Given the inherent challenges posed by complex systems, including multistability, metasta-
bility, and the occurrence of rare events, as well as their evident high-dimensionality,
nonlinearity, and multiscale nature, it might seem counterintuitive that their essen-
tial characteristics could be captured by a limited set of macroscopic observables
[19, 27, 28, 29, 30, 31, 32], for example, density or momentum, as in the Navier-Stokes
equations. However, this principle, often termed the Manifold Hypothesis, is a central
hypothesis that underpins much of complex systems research [33, 29]. It asserts that the
system’s dynamics are effectively confined to a lower-dimensional subspace, as a conse-
quence of the intricate interactions between system components. While the potential for
irreducible complexity exists, the assumption of emergent behavior, often associated with
the formation of collective patterns, is fundamental to the study of complex systems. This
principle stems from the observation that the interactions between system components
often induce correlations, effectively projecting/driving the system’s high-dimensional
dynamics onto a lower-dimensional manifold. Besides, Self-organization within com-
plex systems leads to the formation of dissipative structures, from which macroscopic
properties emerge [14, 16, 25]. The concept of a Slow Manifold, where system trajecto-
ries rapidly converge, provides a theoretical framework for this phenomenon [34, 29, 31].
This convergence is similar to the behavior observed in singular perturbed systems, where
the system’s dynamics separate into fast and slow components. Crucially, the separation
of time scales inherent to complex systems leads to dependencies between higher-order
and lower-order statistical moments. This characteristic underscores the potential for
dimensionality reduction techniques. By focusing on a reduced set of carefully selected
coarse-grained variables, one may effectively capture the system’s essential behavior,
thus developing reduced order models (ROMs) capable of simulating the collective

1Over an extremely long period of time, at standard temperature and pressure, diamond is thermodynami-
cally unstable and will gradually transform into graphite.
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dynamics of complex systems efficiently [35, 27, 36, 34, 19, 37, 11, 12, 28, 38, 39, 40].

To further clarify this concept, consider the behavior of a gas. While the individ-
ual motions of atoms within a gas are highly complex and occur in a high-dimensional
space, the emergent behavior can be described using a single macroscopic variable:
temperature. Temperature, in this case, represents the average kinetic energy of all the
molecules in the gas, effectively reducing the dimensionality of the system’s description
[41]. Therefore, we can say that the emergent behavior in this case become apparent and
physically explainable. Similarly to gases, fluid dynamics offers a canonical example of
multiscale (and coarse-graining) modelling, where systems can be described at various
levels of detail (granularity) [41]. The fundamental constituents are atoms/molecules,
and the behavior of the fluid can be described through classical mechanics using New-
ton’s equations of motion. This particle-based perspective forms the foundation for
understanding fluid dynamics. At the macroscopic level, fluid flow is governed by the
Navier-Stokes equations, a set of partial differential equations (PDEs) that describe the
motion of fluid substances. These equations are fundamental to fluid mechanics and
are used to model a wide range of phenomena, from weather patterns to blood flow
[42, 41]. They capture the conservation of mass, momentum, and energy within the
fluid, considering factors such as pressure, velocity, temperature, and fluid properties
like viscosity [41]. Bridging the gap between this atomic view and the macroscopic
behavior we observe requires intermediate levels of description. The mesoscopic scale,
often modeled using the Boltzmann transport equation, represents one such intermediate
level, where collective particle properties are considered [43, 35, 27, 44, 40, 45]. This
approach, which tracks the evolution of particle density distributions, effectively repre-
sents particles as collective entities. Beyond the mesoscopic and macroscopic scales,
even coarser representations are possible. Simplified models, such as the Lorenz system
for turbulent flows [42], or the Doi model for liquid crystals [46, 44] can capture essential
dynamics. In fact, the Lorenz system is a classic example of how one can construct
ROM that can capture complex behaviors such as multistability and chaos, where small
changes in initial conditions lead to vastly different outcomes. Despite the inherent
unpredictability in chaotic regimes, it is remarkable that such complex dynamics can
still be captured by low-dimensional models. In the case of the Lorenz attractor, three
ordinary differential equations (ODEs) suffice to describe the system’s chaotic behavior.
This example highlights how even highly sensitive emergent behavior, originating from
complex interactions at the high-dimensional microscopic scale, may often be reduced
to simpler, physically meaningful low-dimensional macroscopic descriptions.

At the microscopic level, instead of particles in complex fluids, diverse individual
agents or constituents and intricate interaction mechanisms contribute to complexity to
different phenomena across fields. For instance, in neuroscience, neurons interactions
enable cognitive functions [1, 2]. In ecology, predator-prey dynamics influence ecosys-
tem balance [26]. In epidemiology, infected individuals may spread disease across a
population [11, 12, 13], while in finance, traders and investors affect market fluctuations
[3, 6, 28]. The physical and dynamical state of the entire complex system is high-
dimensional, encompassing variables such as the position and velocity of agents in a
crowd or the distribution of opinions in a complex social network. Individual agents
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interact through a variety of mechanisms, which may include complex networks, spatial
interactions, or alternative topologies such as hypergraphs. These interactions can be
multifaceted; for example, agents may reside within multi-layer networks where they
perform different functions and adhere to distinct interaction schemes, influencing their
behavior in various systems. The nature of interactions is not solely determined by
the topology; they can also be governed by stochastic processes, decision-making rules,
environmental influences, or event-driven mechanisms, where the occurrence of specific
events can strengthen, alter, or rewire the network of interactions.

A diverse array of computational modeling techniques, including Brownian dynamics
[27], Monte Carlo simulations [38, 31], Agent-Based Models (ABM) [3, 11, 28, 13, 26, 6],
molecular dynamics [36], cellular automata [47] and social-force models for crowd
dynamics [48, 49], are employed to simulate these microscopic processes. The specific
choice of technique depends on the nature of the system being studied, as each method
is tailored to address different scales and complexities. These simulators often serve
as digital twins, “creating surrogate versions of real-world complex systems inside our
computing machines, changing the way we do science" [50]. Moreover, our need for
understanding (and controlling) such phenomena has made microscopic simulators, such
as ABMs, key modeling tools in digital twin modeling in domains ranging from ecology
[26, 47] and epidemics [11, 13], to finance and economy [3, 4, 5, 28, 6]. However,
while powerful, microscopic simulations can be computationally expensive due to the
high dimensionality of the system. For example, simulating just one physical second of
molecular motion can require days of computational time, making long-term predictions
infeasible. This slowness often necessitates parallelized efforts and specialized hardware,
such as GPUs, to manage the extensive computations involved. This challenge becomes
even more pronounced when conducting systems-level analysis, such as localizing tipping
points or performing rare event analysis. These tasks frequently rely on extensive, brute-
force temporal simulations to estimate the frequency distribution of abrupt transitions
[4, 5, 51, 52, 6]. However, such an approach confronts the “curse of dimensionality": the
computational cost rises exponentially with the number of degrees of freedom [5, 6]. Such
a direct simulation scenarios approach is therefore neither systematic nor computationally
efficient for high-dimensional simulators. Furthermore, it often does not provide physical
insight regarding the mechanisms that drive the transitions.

Ascending to a coarser grain, the mesoscopic level encompasses groups of particles
or agents, often referred to as mesoscale structures. These structures can be characterized
by probability density functions of statistical moments, providing a statistical description
of the population. Mathematical frameworks, relying on kinetic theory and statistical
mechanics, like Fokker-Planck (FP) equations [53, 44, 3], Langevin equations [54], lattice
Boltzmann [35, 40, 45], dissipative particle dynamics [55] and wavelet analysis [56] can
be employed to model these mesoscopic dynamics.

At the macroscopic scale, the system’s emergent behavior becomes apparent. By
adopting a continuum perspective, the system can be described by a limited set of coarse-
grained observables governed by PDEs, possibly including stochastic terms (SPDEs) or
integral terms (IPDEs). Alternatively, extremely-coarse mean-field approximations can
offer some scenario-oriented or essential emergent description at a spatiotemporal-scale
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of interest, thus ROMs composed of few ODEs, could represent effectively medium to
long time evolution of the emergent behavior.

The potential of PDEs to capture the complexity of these systems is particularly
intriguing. Nonlinear reaction-diffusion equations, such as Turing’s model for mor-
phogenesis [57], the Allen-Cahn equations for microstructure evolution and diffusive
interfaces [58], and Prigogine’s Brusselator diffusion PDEs [59], have demonstrated the
ability to generate complex patterns and instabilities [57, 59]. Moreover, PDE-based
models have been successfully applied to biological and socio-economic systems [60, 3].
The Keller-Segel model describes chemotaxis in bacterial populations [60], while FP
equations have been used to model agent behavior in financial markets [3]. These ap-
plications underscore the versatility of PDEs in capturing emergent phenomena of the
complex system dynamics.

However, for many real-world complex systems such equations in a closed form, i.e.,
good macroscopic descriptions, are in general unavailable [34, 19]. Besides, even the
“correct" macroscopic variables for the description of the emergent behavior may be also
not known a priori [37]. In certain situations, there could be physical observables with
significant meaning. However, it becomes necessary to assess their significance within
the context of a dynamical system and determine if they provide sufficient information to
create closures [40]. Therefore, the reconstruction of “accurate" coarse-grained dynam-
ical models from data is becoming a fundamental problem in complex systems theory
and its various applications.

1.1.3 Machine Learning and Big Data analysis meet Complex systems
We live in an era where the volume, speed, and variety of big data are rapidly increasing,
and its analysis is becoming increasingly important [61, 62, 63]. This is not only due
to the fascination of extracting valuable, reliable, and understandable information from
vast datasets, but also because these data are rapidly transforming our society and our
interactions with technology [61]. Big data power services that were unimaginable
just a few years ago, profoundly changing our daily lives and habits [61, 63]. In this
context, data mining, a collection of mathematical techniques and methodologies aimed
at efficiently extracting useful information and meaningful patterns from large datasets,
has become essential [62]. This allows us to create models that can interpret data
behavior and predict future trends. The tools underlying this process are diverse and
multidisciplinary, including functional analysis, numerical analysis, algebra, statistics,
and artificial intelligence.

Recent developments at the junction between numerical analysis and ML have revo-
lutionized the way we think about modeling and analysis from big data, thus opening the
way to a new direction, where the data themselves constitute the focus of interest and the
generation of hypotheses arises from data mining and analysis [64, 65, 66, 67].

ML, a branch of artificial intelligence, focuses on methods that can “learn" from
experience, thus adaptively improve performance based on data. ML is therefore highly
suited for tasks such as classification, prediction, detection, optimization, and recogni-
tion, thus leading to new strategies for analysis, identification, and control of complex
systems. In the context of complex systems, ML techniques have been applied to uncover
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system structures (e.g., network topologies) [68] and analyze the dynamics of nonlin-
ear behaviors, including the prediction of system evolution [40, 66], the reconstruction
of bifurcation diagrams [69, 45], the design of controllers and observers [70, 71], the
identification of Hamiltonian system [72] and the computation of Lyapunov exponents
[73, 74]. On the other side, certain ML methods, like reservoir computing [75, 74] and
long short-term memory networks (LSTMs) [76, 74], are themselves dynamical systems.
This has led to new theoretical studies of these methods using tools from dynamical
systems’ theory. ML has proven effective in modeling complex physical phenomena
[66], including climate networks [77], phase-field modelling [78], spatiotemporal chaos
[73, 74], and neural circuits [79]. However, many real-world applications of complex
systems – ranging from neuroscience and engineering to social sciences and economics –
pose additional challenges, such as incomplete or noisy data and the difficulty of deriving
macroscopic models from microscopic dynamics [80]. These challenges have sparked a
growing interest in data-driven approaches to reconstructing effective models, especially
when traditional equations are unavailable or too costly to solve [66].

Moreover, while ML offers powerful tools for handling such problems, it is often
limited by data scarcity, especially in cases where collecting large, high-quality datasets
is impractical [80]. This is particularly critical in complex systems research, where
observational data can be sparse, incomplete, or highly uncertain. Addressing these
limitations requires the development of methods that are both data-efficient and capable
of incorporating domain knowledge [66]. Equally important is ensuring that the resulting
models are robust and interpretable, with proper uncertainty quantification to assess the
reliability of predictions [81]. The intersection of ML and complex systems continues
to expand, offering new opportunities for both understanding and controlling complex
systems. Promising future directions include hybrid data-driven and physics-informed
models, explainable AI for decision-making, and real-time applications such as ML-
assisted early-warning systems and online control.

1.1.4 Solving Forward and Inverse Problems in Complex Systems Using
Machine Learning

The two fundamental applications of ML in complex systems regards the solution of the
inverse and forward problem. In the forward problem, the mathematical model – typically
described by ODEs or PDEs – is known, including the initial and boundary conditions.
The unknowns are the solution fields, which correspond to the spatio-temporal behavior
of the dynamical system. On the other hand, the inverse problem deals with the opposite
situation: the data, typically collected by a finite number of sensors distributed across
the spatial domain and recording at discrete time intervals, are known, but the underlying
model or governing laws are unknown. These data often represent spatio-temporal
realizations of the system’s trajectories, which may be available either in their entirety
(e.g., high-dimensional states of all agents) or through composite observations of these
states [82].

Thus, the primary objectives of ML in this context are mainly two. The first is
solving the inverse problem, which involves identifying or discovering the underlying
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macroscopic laws. This includes learning nonlinear operators and constructing coarse-
scale dynamical models, such as ODEs and PDEs along with their closures, using data
from large-scale microscopic simulations or multi-fidelity observations [83, 65, 72, 84,
40, 74, 85, 86, 87, 66]. Second, once these coarse-scale models are constructed, ML
can be used to systematically investigate the system’s dynamics by efficiently solving
the corresponding DEs, especially for challenging problems like stiffness and high-
dimensional PDEs [88, 89, 83, 65, 69, 85, 90, 91, 92, 93, 66, 94, 95]. In addition to
these primary objectives, a new paradigm is emerging that focuses on the identification
of general nonlinear operators from data and/or adequately sampled functional spaces
[86, 96, 97].

In the next section, we briefly review the state-of-the-art for the solution of forward
and inverse problems.

1.2 State-of-the-art of ML for complex systems
The interest in using ML as an alternative to classical numerical analysis methods
[98, 99, 100, 101, 102, 103, 104, 105, 106] for the solution of the inverse [107, 108, 109,
110, 111, 112, 27], and forward [113, 114, 115, 116] problems in DEs can be traced back
three decades ago. These early efforts demonstrated the potential of using neural networks
for forward tasks such as solving ODEs and PDEs [113, 114, 115, 116], feedback control
[117], and reproducing numerical schemes [108, 112], as well as for inverse tasks such as
system identification based on macroscopic observations and derivation of normal forms
[107, 108, 109, 118, 112, 119]. Today, this interest has been boosted together with our
need to better understand and analyze the emergent dynamics of complex multi-physics/
multiscale dynamical systems of fundamental theoretical and technological importance
[66]. Moreover, advancements in computational power and new theoretical methods
have driven the development of ML techniques for solving complex forward problems
in PDEs, including nonlinearity, stiffness, sharp gradients, complex geometry and high-
dimensionality [89, 88, 120, 121, 90, 122, 69, 95, 123].

More details on specific ML methods for forward and inverse problems are presented
in the two following subsections.

1.2.1 State-of-the-art for the solution of the forward problem with ML
In recent years, significant advancements in ML have broadened our computational
toolkit with the ability to solve the forward problem in DEs and multiscale/complex
systems. For the forward problem, ML algorithms such as GPR and PINNs are trained
to approximate the solutions of nonlinear DEs, with a particular interest in stiff and
high-dimensional systems [88, 89, 83, 65, 93, 69, 95, 94, 91], as well as for the solution
of nonlinear functional equations [66, 86, 124, 70, 125, 71].

Since the 1990s, there has been a notable increase in research focusing on solving
numerical analysis problems [113, 108, 114, 117, 115, 112]. Early work by Lee and Kang
(1990) [113] employed a Hopfield Neural Network to address the numerical solution
of DEs. Rico-Martinez et al. (1992) [108] introduced a recursive multilayer ANNs
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architecture, emulating the implementation of the 4th-order Runge-Kutta scheme, for the
identification of continuous-time ODEs and the construction of their bifurcation diagram
from experimental data. Meade and Fernandez (1994) [114] handle the resolution of
linear ODEs with ANNs, applying the Galerkin weighted-residuals method. Yeşildirek
and Lewis (1995) [117] employed a neural network-based controller for the feedback
linearization of dynamical systems. Gerstberger and Rentrop (1997) [115] utilized
feedforward neural networks (FNNs) addressing stiff ODEs, as well as DAEs. Lagaris
et al. (1998) [116] systematically investigate the use of FNNs for the solution of linear
and nonlinear DEs, addressing a range of scenarios from initial and boundary value
problems. The method is based on the construction of appropriate trial functions, the
analytical derivation of the gradient of the error with respect to the network parameters
and collocation. The training of the FNN was achieved iteratively with the quasi-Newton
BFGS method.

Nowadays, the exponentially increasing – over the last decades – computational power
and recent theoretical advances, have fueled further developments at the intersection
between ML and numerical analysis. In particular, on the side of the numerical solution
of PDEs, the development of systematic and robust ML methodologies targeting at the
solution of large scale systems of nonlinear problems with steep gradients constitutes
an open and challenging problem in the area. Notably, PIML methods, such as those
explored by Raissi et al. (2018, 2019), Han et al. (2018), and Karniadakis et al. (2021),
have become a central focus [83, 65, 89, 66, 88, 126, 121, 122, 90]. In particular, the term
“Physics-Informed Neural Networks" (PINNs) was coined [65] to describe ANNs that
are trained to solve the forward and inverse problem for DEs, incorporating information
about the governing equations, initial and boundary conditions (for PDEs), thus providing
analytically the necessary derivatives that are needed for the training phase, using for
example automatic differentiation [127, 93].

Raissi et al. (2018) [83], addressed the concept of numerical Gaussian Processes for
the numerical solution of linear and nonlinear time-dependent differential operators. The
proposed approach is demonstrated through the one-dimensional nonlinear Burgers, the
Schrödinger, and the Allen–Cahn equations. Han et al. (2018) [89] used Deep Learning
to solve high-dimensional nonlinear parabolic PDEs including the Black–Scholes, the
Hamilton–Jacobi–Bellman and the Allen–Cahn equation. Wei et al. (2018) [88] used
DNN to solve modified high-dimensional diffusion equations. The training of the DNN is
achieved iteratively using an unsupervised universal ML solver. Regazzoni et al. (2019)
[126] used FNNs to develop and solve ROMs from data. The approach was demonstrated
using two low-dimensional non-linear systems of ODEs modelling a nonlinear pendulum
and a nonlinear transmission lie circuit and two linear PDEs, namely the heat and the
wave equation. Samaniego et al. (2020) [121] used Deep learning to solve coupled
PDEs arising in phase-field models in mechanical problems. The approach is based
on collocation while the training is achieved minimizing the energy of the system by
exploiting the variational structure that may arise in some of these problems. Tang et
al. (2021) [122] used ANN for the numerical solution and coupling of PDEs at their
interfaces. The approach was demonstrated via the computation of coupled Poisson
and advection-diffusion equations. Chen et al. (2021) [90] used Gaussian Processes
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for the numerical solution of PDEs as well as the solution of the inverse problem. The
efficiency of the scheme was validated through a nonlinear elliptic PDE, the 1D time-
dependent Burgers and the Eikonal PDE. The optimization of the unknown parameters
was performed using the Gauss-Newton method, which was found to converge in a small
number of iterations for the specific problems.

While ML offers innovative approaches, it’s important to acknowledge the signifi-
cant contributions of classical numerical analysis methods. For spatial discretization,
techniques such as FD, FEM, Finite Volume, and Spectral methods based on Fourier
series or Chebyshev polynomials have been widely used for decades [106, 102, 105].
These methods provide robust and efficient solutions for a variety of PDEs, thanks to
their solid theoretical underpinnings, in terms of convergence and stability, and proven
performance in practical applications. For the time integration of initial value problems
(IVPs), numerical analysis has developed a rich arsenal of techniques. The fundamental
idea is to approximate the right-hand side (RHS) of ODEs with polynomials and inter-
mediate approximation stages, and then integrate the resulting interpolating polynomial.
This approach has led to methods like single-step Runge-Kutta methods, and Multi-step
methods such as Adams-Bashforth and Adams-Moulton [98, 99, 100, 103, 104]. Spe-
cialized codes for ODEs often incorporate stable methods and adaptive time-stepping to
enhance accuracy and efficiency. In MATLAB, composite methods with variable order and
step size, like ode45 and ode15s, are popular choices for both nonstiff and stiff problems
[103].

Numerical analysis has made remarkable progress in solving DEs, as evidenced by
W. Gear’s influential SIAM review (1981), “Numerical solution of Ordinary Differential
Equations: is there anything left to do?" [100]. For relatively simple problems, it is
clear that nearly all challenges have been addressed, and specialized numerical solvers
are highly efficient, to the extent that probably ML approaches may never surpass them
in performance. However, when faced with complex and stiff problems, sharp gradients
can pose significant challenges for traditional methods such as FD and spectral schemes,
which may struggle to accurately capture the rapid changes in the solution. In addition,
FD schemes are less developed, and FEM tessellations can become computationally
infeasible for intricate geometries or high-dimensional PDEs in dimensions beyond three.
In these scenarios, traditional numerical methods may encounter limitations due to the
complexity of the geometry and the computational cost associated with mesh generation
[89, 88].

Recent results in the literature, as reviewed above, suggest that PINNs hold signifi-
cant promise for tackling such challenging scenarios, particularly in the context of stiff
systems, sharp gradients, and high-dimensional PDEs. Nevertheless, it is important
to recognize that PINNs are still in the early stages of development. Key challenges
remain, including mitigating the high computational cost associated with the “curse of
dimensionality" and overcoming the difficulties posed by the non-convex optimization
inherent in training PINNs. Furthermore, establishing rigorous theoretical foundations
for the convergence rates and stability of PINN methods is essential for their widespread
adoption in practical applications.
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1.2.2 State-of-the-art for the solution of the inverse problem with ML
The discovery of physical laws and the solution of the inverse problem in complex
systems modelling, i.e., the construction of PDEs for the emergent dynamics from data
and consequently the systematic analysis of their dynamics with established numerical
analysis techniques is a holy grail in the study of complex systems and has been the focus
of intense research efforts over the last years [66, 128, 97, 65].

The goal of the inverse problem is to identify the model, whether discrete or contin-
uous, that governs the observed dynamics. This task is challenging due to the inherent
ill-posedness of the problem, where multiple models may fit the data equally well. These
models can vary in form, scale, and accuracy, ranging from black-box models (which rely
on fully nonlinear representations) to gray-box models that incorporate prior knowledge
about the system’s physics. In other cases, the focus may be on parameter estima-
tion, which could involve fitting functional parameters dependent on the states and their
derivatives in inhomogeneous settings.

A systematic analysis of the framework to solve the so-called inverse problem requires
three essential tasks. First comes the discovery of an appropriate low-dimensional
set of collective variables (observables) that can be used to describe the evolution of
the emergent dynamics [32, 30]. Such coarse-scale variables may, or may not, be a
priori available, depending on how much physical insight we have about the problem.
Indeed, for complex systems, such “good” macroscopic observables that can be used
effectively for modeling the dynamics of the emergent patterns are not always directly
available. Thus, such an appropriate set of “hidden" macroscopic variables have to be
identified from data. Such data can be available either directly from experiments or from
detailed simulations using for example molecular dynamics, ABMs, lattice Boltzmann
methods and Monte-Carlo methods. For this task, various manifold/ML methods have
been proposed, including diffusion maps (DMAPs) [129, 130, 40, 45, 131], ISOMAP
[132, 133] and local linear embedding (LLE) [134, 135], but also autoencoders (AE)
[136, 137, 72, 138, 139].

The second task focuses on identifying the appropriate type of model required to
address the problem. A key consideration is whether the identified quantities can be
modeled using ODEs or PDEs, or if global or integral features necessitate the use
of IPDEs. This process involves determining whether a parabolic or hyperbolic time
evolution is needed, or if mixed terms are appropriate. Additionally, it is crucial to
identify which spatial partial derivatives are relevant—whether they represent diffusion,
transport, reaction, advection, or higher-order processes. Feature selection poses a
significant challenge in this context, as the relevant local or global (PDEs or IPDEs)
spatial features are often unknown beforehand [40, 45, 67].

Based on this initial analysis, the third task pertains to the construction of appropriate
ROMs, in order to parsimoniously perform useful numerical tasks and –hopefully– obtain
additional physical insight. One (traditional) option is the construction of ROMs “by
paper and pencil", using the tools of statistical mechanics [30, 32]. However, restrictive
assumptions, that are made in order to obtain explicit closures bias the estimation of the
actual location of tipping points, as well as the statistics and the uncertainty quantification
(UQ) of the associated catastrophic shifts [32]. Moreover, the derivation of analytical
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ROMs requires a priori knowledge of the “correct“ physical variables, of the (first-
principles) laws of the interactions between units and eventually the topology/network
of interactions in high details.

Another option is the direct, data-driven identification of surrogate models in the
form of ordinary, stochastic or partial DEs via ML. From the early ’90s, exploiting both
theoretical and technological advances, researchers employed ML algorithms for system
identification using macroscopic observations, i.e., assuming that we already know the
set of coarse variables to model the underlying dynamics and the derivation of normal
forms ([107, 108, 109, 118, 112, 119]). The solution of the inverse problem leverages the
ability of ML algorithms to learn the physical laws, their parameters, and closures among
scales from data [140, 65, 40, 66, 45, 67, 141, 86, 124]. To the best of our knowledge, the
first neural network-based solution of the inverse problem for identifying the evolution
law (the right-hand-side) of parabolic PDEs, using spatial partial derivatives as basis
functions, was presented in Gonzalez et al. (1998) [112]. In the same decade, such
inverse identification problems for PDEs, were investigated through ROMs for PDEs,
using data-driven Proper Orthogonal Decomposition (POD) basis functions [109] and
Fourier basis functions (in a context of approximate inertial manifolds) in [119].

More recently, a growing number of techniques have been proposed to identify
the governing laws of complex systems. Such approaches include, to name a few,
sparse identification of nonlinear dynamical systems (SINDy) [142], GPR [40, 90],
FNNs [108, 112, 40, 84, 45, 141, 139], RPNNs [45, 67], recursive neural networks
(RvNN) [112, 138], reservoir computing (RC) [74], neural ODEs [143, 87], autoencoders
[72, 138, 139], as well as DeepONet [86]. However, their approximation accuracy clearly
depends very strongly on the available training data, especially around the tipping points,
where the dynamics can even blow up in finite time.

In the early 2000s, the Equation-Free and Variable-Free multiscale framework [35,
19, 27, 37] provided a systematic framework for the numerical analysis (numerical
bifurcation analysis, design of controllers, optimization, rare-events analysis) of the
emergent dynamics as well as for the acceleration of microscopic simulations, by bridging
the microscale where the physical laws may be known and the macroscopic scale where
the emergent dynamics evolve. This bridging is achieved via the concept of the “coarse
time steppers", i.e., the construction of a black-box map on the macroscopic scale. By
doing so, one can perform multiscale numerical analysis, even for microscopically large-
scale systems tasks by exploiting the algorithms (toolkit) of matrix-free methods in the
Krylov subspace [144, 145, 28], thus bypassing the need to construct explicitly models
in the form of PDEs. In the case when the macroscopic variables are not known a
priori, one can resort to non-linear manifold learning algorithms such as Diffusion maps
(DMaps) [129, 130, 146] to identify the intrinsic dimension of the slow manifold where
the emergent dynamics evolve. If the coarse-variables are known, the Equation-free
(EF) approach [19] offers an efficient alternative for learning “on demand" local black-
box coarse-grained maps for the emergent dynamics on an embedded low-dimensional
subspace; this bypasses the need to construct (global, generalizable) surrogate models.
This approach can be particularly useful when conducting numerical bifurcation analysis,
or designing controllers for ABMs [131]. However, even with a knowledge of good
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coarse-scale variables, constructing the necessary lifting operator (going from coarse
scale descriptions to consistent fine scale ones) is far from trivial [131].

In the next section, we describe the main challenges associated to the solution of
forward and inverse problems.

1.3 Challenges of traditional and ML approaches for com-
plex Systems: the curse of dimensionality

Despite numerous efforts in numerical analysis, ML, as well as theoretical and analyt-
ical approaches, significant open challenges persist in solving the inverse and forward
problems in DEs. These challenges include: (a) improving closures beyond mean-field
approximations by solving inverse problems from data generated by microscopic simula-
tions, and, (b) efficiently solving high-dimensional PDEs in the forward problem, which
is nontrivial, particularly when dealing with sharp gradients, stiffness, and complex
geometries or free/moving boundaries.

Traditional numerical techniques, such as Finite Difference (FD) or Finite Element
Method (FEM), often struggle with high-dimensional parameterized PDEs due to the
“curse of dimensionality", leading to an exponential increase in computational resources.
These methods rely on fixed grids or meshes, which can hinder their applicability in
complex geometries, free-boundaries or problems characterized by steep gradients, ne-
cessitating adaptive approaches. Polynomial-based methods, while effective in low
dimensions, often do not generalize well in higher dimensions, where ML methods,
particularly meshless approaches like neural networks, can potentially excel. Besides,
traditional numerical methods often face difficulties in incorporating noisy data, strong
nonlinearities and stiffness introducing multiple sources of uncertainty [81].

ML has emerged as a promising avenue and potential solution for some of the above
challenges [88, 89, 66, 69, 86, 67, 45, 91], and have led to a growing interest for solving
more efficiently large-scale difficult numerical analysis problems.

However, ML itself is not without its challenges: failures may arise at the training
phase, especially in deep learning formulations. This occurs because training deep
neural networks, for both forward and inverse problems, can be slow and computationally
expensive, exacerbated by the non-convexity of optimization landscapes and difficulties in
escaping local minima [147, 148, 149, 150, 151, 66]. Also, training deep neural networks
requires substantial amounts of data, which may not always be available for real-world
problems. Furthermore, despite recent theoretical advancements, rigorous theoretical
numerical analysis of their performance in terms of accuracy, stability, and robustness is
still lacking, as well as the uncertainty quantification of the ML models is still limited
in the literature [81, 152]. The uncertainty and interpretability of ML models present
significant challenges, particularly in scientific contexts where understanding underlying
dynamics is as crucial as predictive accuracy. In complex systems, additional challenges
arise when modeling and identifying tipping points and rare events, which necessitate
robust surrogate models capable of managing stiffness and inherent uncertainties [67].

Finally, while it is often believed that ML methods, such as ANNs, are less suscep-
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tible to the “curse of dimensionality” due to their theoretically better scalability [153],
the curse still affects both the data and model complexity. Training in high-dimensional
parameter spaces, such as those found in deep learning models with numerous weights,
biases, and hyperparameters (like the number of neurons, hidden layers, learning rates,
and batch sizes), becomes exceedingly difficult. The vast number of options and de-
cisions required—such as choosing the right architecture, optimization algorithm, and
hyperparameters—makes finding an optimal solution highly challenging.

The above challenges highlights that the solution of inverse problems involving the
identification of “hidden physics" from data often remains prohibitively expensive, and
the theoretical tools are still at their infancy [83, 65, 66]. Furthermore, solving real-world
physical problems with missing, gappy or noisy boundary conditions through traditional
approaches is currently infeasible.

Two additional practical challenges for the solution of the inverse problem, that are
worth to mention, involve emergent spaces and parameter non-identifiability [154, 155].
The first challenge lies in the identification of emergent spaces for complex systems,
such as networks of interacting agents, where no obvious spatial coordinates exist to
define effective evolution laws in the form of PDEs [154]. In such systems, embedding
coordinates must be learned from time-series data through manifold learning techniques,
which then allow for the discovery of effective PDEs in these emergent spaces.

The second challenge arises in learning parametric PDEs. The specific parameter,
whose changes or perturbations cause sudden and dramatic changes in the system’s
behavior, may remain unknown [155]. While some system parameters may be known,
the effective bifurcation parameter might remain hidden. This issue becomes even more
apparent when data is structured not around explicit, tunable parameters, but rather
as realizations from different populations. This scenario often arises in real-world
applications where data is collected from diverse sources or under different conditions.

1.4 Key research questions
Central to our research is whether Machine Learning (ML) can effectively complement or
even replace traditional numerical methods in solving both forward and inverse problems.
Some key research questions that this Thesis addresses are here listed:

• To what extent can ML methods complement or replace traditional numerical
techniques in solving both forward and inverse problems within the context of
complex systems?

• Can ML be employed to uncover novel insights into the underlying dynamics
of complex systems, particularly with respect to identifying tipping points and
analyzing rare events?

• Can we overcome the difficult issues associated with the “curse of dimensionality"
and the non-convexity when optimizing large-scale deep neural networks?

The research questions posed are framed within the context of complex systems due
to the intrinsic challenges of capturing their emergent behaviors, high-dimensionality,
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and nonlinearity. Additionally, the research questions posed arise from the recognition of
significant limitations in both traditional numerical methods and modern ML approaches
when applied to complex system modeling and simulation. Addressing these pitfalls,
as outlined in Section 1.3, requires the development of hybrid methods that combine
the best aspects of numerical analysis (such as stability and theoretical guarantees) with
the flexibility and scalability of ML. This Thesis not only explores the fundamental
questions outlined, but also contributes to a larger discussion on the integration of ML
with traditional numerical techniques. In this context, the research questions aim to
explore whether ML can mitigate the limitations of traditional methods, while also
pushing the boundaries of ML to handle issues like stiffness, rare event prediction, and
complex operator discovery from data. As ML continues to evolve, its capacity to tackle
complex, high-dimensional problems will become increasingly relevant, and our findings
lay the groundwork for future research in these domains.

1.5 Main Objective of the Thesis
The primary objectives of this Thesis, are connected to the solution of both the forward
and the inverse problems, with the aid of ML and tailor-made numerical analysis to
deal with the “curse of dimensionality”. In particular, the focus is on the development
of a multiscale ML numerical-analysis-assisted framework for the systematic extraction
of coarse-scale observables from microscopic/fine-scale data, the construction and also
the numerical solution of effective PDEs (or ROMs) using novel ML and numerical
analysis algorithms, that can lead to significant computational savings in large-scale
spatio-temporal simulations.

The work introduces novel fine-tuned random projection-based methods for both
function approximation and operator learning, pioneering their application in inverse
problem with reconstruction of bifurcation diagrams, and achieves state-of-the-art results
in solving forward problems for ODEs and PDEs, supported by efficient computational
implementations. A schematic overview of the main objectives of the thesis is depicted
in Figure 1.1

To achieve this, the research will focus on the following key goals:

• Reduction of Complexity: Utilize manifold learning techniques to identify essential
macroscopic observables that capture the key dynamics of complex systems.

• Data-Driven Reduced Order Model Construction: Develop ML frameworks, par-
ticularly based on FNNs and RPNNs, to learn the RHS of effective DEs based on
the extracted observables, while handling uncertainty and nonlinearity.

• Handling local and/or global Features: Address challenges in capturing dominant
spatial features by combining neural architectures with specialized feature selection
techniques for more accurate model representation.

• Assess Surrogate Models: Investigate the trade-offs between low-dimensional sur-
rogate models (e.g., ODEs/SDEs) and more complex infinite-dimensional PDEs,
optimizing for both computational efficiency and model accuracy.
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Figure 1.1: Schematic Overview diagram of the main objectives of the Thesis.

• Analysis of the emergent dynamics: studying the qualitative changes in system be-
havior by performing bifurcation analysis on the ML-assisted surrogates. The goal
is to understand how macroscopic patterns and phenomena arise from underlying
microscopic interactions.

• Accelerate full-scale microscopic simulations: by creating simplified models that
retain key features of the dynamics, we can significantly reduce computation time,
enabling faster simulations.

• Rare Event Prediction: Develop algorithms that accelerate rare event analysis, usu-
ally infeasible when performed at the level of full-scale microscopic simulations,
improving the understanding of emergent behaviors and tipping points.

• Overcoming Numerical Limitations: particularly, the limitations of traditional
numerical techniques, in high-dimensional spaces and stiff systems.

• Hybrid Methods: Design hybrid numerical-ML schemes that integrate the stability
and theoretical guarantees of numerical analysis with the flexibility and scalability
of ML to solve PDEs and ODEs efficiently.

Alongside the above, one additional goal is to advance the application of ML tech-
niques, both theoretically and practically, tackling key challenges associated with their
training, and making them suitable alternatives, if not the primary choices, when solving
both forward and inverse problems in the context of complex systems.

These objectives guide the research questions and the methodological approaches
developed throughout this thesis.
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1.6 Contributions of this work
The research conducted during the 4-year PhD (2020-2024) has contributed to several
key advancements in numerical analysis and PIML for complex systems. The work
follows a three-tier approach: (a) developing new methodologies, (b) addressing inverse
problems, and (c) solving and analyzing forward problems.

1.6.1 Methodologies and Theoretical Advances
In terms of methodologies and theoretical advances, notable contributions were made
through the development and optimization of RPNNs. These networks have been tailored
to effectively solve efficiently the forward problems for ODEs and PDEs in a physics-
informed way [69, 95]. Additionally, they were successfully coupled and integrated with
bifurcation analysis tools [69, 95]. We have also theoretically investigated the stability
of such PINN-based methods, for the first time [152]. Besides, within the random
feature framework, we have introduced the concept of RPNN of best approximation,
establishing its existence, uniqueness, and fast convergence – both theoretically and
experimentally – when approximating smooth functions [156]. Furthermore, we have
introduced a novel architecture for the approximation of operators, termed RandONets,
taking inspiration from DeepONets and the Chen and Chen universal approximation
theorem of operators [157]. In such work, we have also extended the theoretical proof of
universal approximation of operators to RandONets. In [157], this approach was tested on
various linear and nonlinear PDE evolution operators, demonstrating RandONets’ ability
to effectively model and approximate these complex systems with minimal computational
cost, outperforming their vanilla fully-trained DeepONets counterparts by several orders
of magnitude.

In addition, we introduced a parsimonious approach for selecting the bounds of the
uniform distribution of internal weights for boundary-value problems [69, 95]. This is
a crucial step. Although, theoretically any random selection may suffice, in practice, it
is advantageous to define appropriate ranges for biases and internal weights based on
the chosen activation function. To achieve this, we have demonstrated that selecting and
fixing internal weights and biases through random uniform sampling strategies can lead
to more accurate approximations, surprisingly, than the conventional approach of training
these parameters through optimization. This finding challenges the typical belief that
optimizing weights via training is always necessary for improving model performance.
By avoiding the computational cost and potential pitfalls of training (such as overfitting
or getting stuck in local minima), we provide a simpler, more efficient method for
constructing neural networks that are both robust and highly accurate. We show also
how to extend the randomization of weights when dealing with high-dimensional inputs
[45]. In [95], we conducted an extensive search to optimize the bounds of the uniform
distribution from which the parameters are randomly sampled, rather than optimizing the
parameters directly. This approach was applied to time-dependent problems, such as stiff
ODEs and differential-algebraic equations (DAEs), demonstrating that carefully tuning
the range of the random weights can lead to significant improvements in accuracy.
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1.6.2 Solution of Forward Problems
Regarding the solution of the forward problem, we have established a framework for
PINNs, taking advantages of random projections, that significantly improves both speed
and accuracy compared to traditional PINNs trained with gradient-based methods, achiev-
ing performance improvements of up to 5 orders of magnitude, as demonstrated in [95].
From the theoretical point of view, we have established the convergence of the Physics-
informed RPNN (PIRPNN) scheme when approximating ODEs and DAEs in the semi-
implicit form [95]. Furthermore, we have coupled these ML solutions with numerical
continuation techniques for bifurcation analysis, which is a key tool in understanding the
nonlinear dynamics of complex systems, such as the identification of critical transitions
and branching behaviors [69]. Additionally, we have emphasized the importance of
hybrid methods that integrate concepts from numerical analysis to enhance both com-
putational efficiency and accuracy [157, 95, 69]. This includes the use of continuation
schemes to provide better initialization for solving ODEs in subsequent time intervals,
and employing simple error control schemes to adapt time steps based on Newton’s
method iterations [95].

Most importantly, we have also demonstrated for the first time that RPNN-based ML
methods can outperform established numerical solvers in both computational cost and
numerical accuracy, such as FD and FEM for PDEs [69], and the adaptive backward dif-
ferentiation formula of variable order 1 to 5, implemented in MATLAB’s ode15s function,
for time dependent problems [95].

Such PIRPNN approaches have been tested against several benchmark problems,
including the stationary PDE Liouville-Bratu-Gelfand PDE in 1d and 2d and Viscous
Burgers’ PDE with mixed boundary conditions [69]. As well, we have considered several
benchmark problems for stiff ODEs and DAEs, including van der Pol ODEs, Robertson
DAEs, Belushov-Zhabotinsky ODEs and the stiff Allen-Cahn phase field PDE discretized
along space with FD [95].

1.6.3 Solution of Inverse Problems
Concerning the solution of inverse problems, we have demonstrated how parametric
PDE models can be learned from data generated by lattice Boltzmann mesoscale mod-
els, successfully reconstructing the FitzHugh-Nagumo PDEs, which describe the action
potential propagation in unmyelinated neurons, and its coarse-scale bifurcation diagram
including correct localization of saddle-node and Andronov-Hopf bifurcations [45]. In
addition, we investigated inverse problems starting from high-fidelity data generated by
two microscopic ABMs: (a) a financial market ABM incorporating mimetic behavior
among agents and (b) an ABM modeling the spread of an epidemic on an Erdős–Rényi
social network [67]. For both models, we also learned one-dimensional surrogate SDE
models near the tipping point [67] and conducted rare event analysis in its neighborhood.
We have shown how the local targeted SDE accelerates the simulation, as well as the rare
event analysis, of the full ABMs by several orders of magnitude. We have also utilized
DMaps for the selection of coarse-scale variables, and applied ARD with GPR alongside
parsimonious DMaps to identify the most relevant differential and integral features [67].
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These features are explicitly recognized and utilized by a convolutional neural network
with a fixed FD stencil, enhancing the model’s ability to efficiently process and learn
from spatio-temporal data. Toward the above, we established a general framework for
inverse problems when neither physical insights nor macroscopic laws or observables are
available.

In [67], we demonstrated that the choice of ML surrogate models should be dictated
by the task at hand. We contrast global surrogates that operate across the entire parameter
space, such as ML-learned IPDEs, with local, task-targeted surrogates like ML-learned
SDEs. We demonstrate that global surrogates, though computationally intensive and
data-demanding, are ideal for uncovering emergent behaviors, refining physical insights,
and performing accurate numerical bifurcation analysis, especially for tipping point lo-
calization. They are particularly useful for correcting potential biases in macroscopic
analytical models [67]. In contrast, low-dimensional ML-learned SDEs are more effi-
cient, requiring less data and providing fast, scenario-specific insights. These models are
well-suited for local control design and rare event analysis due to their ability to capture
system volatility, whereas PDE-based approaches may require stochastic formulations
(SPDEs), which are often more complex [67].

1.7 Relevance to risk and complexity
As has likely become evident, the core of our research addresses the inherent complexity
of large-scale systems, particularly in determining and predicting their emergent behav-
iors, which are shaped by nonlinear dynamics and manifold structures [45, 67]. We focus
on uncovering the intricate dependencies and behaviors within these systems, using ML
to reveal hidden structures and relationships that standard analytical methods fail to cap-
ture. By tackling inverse problems in these contexts, we deepen our understanding of
complexity itself, shedding light on how critical transitions and rare events emerge from
the underlying microscopic chaos [67].

Furthermore, our research on solving inverse problems directly addresses the nexus
of complexity and risk, central to the MERC PhD program, by focusing on tipping point
analysis and rare event estimation at the emergent, macroscopic level of complex systems
[67]. By developing innovative ML-based methodologies, we provide deeper insights
into system vulnerabilities and the potential for catastrophic failures, such as those arising
in financial markets [67], epidemic outbreaks [67], and climate change [10]. Our frame-
work efficiently handles computationally demanding tasks, enabling the identification of
critical thresholds – tipping and bifurcation points – and the quantification of associated
risks, such as escape probabilities near these critical points.

While not explicitly focused on control theory, our work on recovering ROMs in the
form of PDEs or low-dimensional SDEs lays the groundwork for advanced control strate-
gies in complex systems. By generating models across different scales and by establishing
mappings between fine-scale, microscopic observables (e.g., full agent configurations)
and mesoscale or coarse-grained observables, either explicitly or through data-driven ap-
proaches, we can inform the design of control actions at the microscopic level. This could
allow for the design of distributed control strategies in finite-dimensional environments
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at a fine scale, guided by the emergent phenomena/consequences at larger scales.
This research is inherently interdisciplinary, drawing on ML, numerical analysis,

bifurcation theory, and dynamical systems [69, 95, 67, 157]. By integrating ML and
numerical methods, we push the boundaries of both fields to create more robust and
accurate models for complex systems. The insights gained through this research are
applicable to a broad range of fields, like neuroscience, finance, and epidemiology,
offering valuable tools for risk mitigation and decision-making in uncertain, high-stakes
environments.

1.8 Thesis structure and outline
The rest of this Thesis is structured into seven chapters, each addressing a different
aspect of the methodologies, development, and applications of ML and RPNNs in solving
complex systems problems.

Chapter 2 starts by introducing artificial neural networks (ANNs), covering funda-
mental concepts such as the universal approximation theorem and basic training algo-
rithms, while also addressing key challenges related to fully-trained vanilla ANNs. Then
provides an in-depth exploration of linear and nonlinear random projection techniques,
beginning with the Johnson-Lindenstrauss (JL) Lemma and the work of Rahimi and
Recht on Random Fourier Features (RFF) [158] and Random Kitchen Sinks (RKSN)
for approximating kernel methods [159, 160]. The chapter transitions into the intro-
duction of RPNNs of best approximation, a concept borrowed by polynomial of best
approximation. Thus, we prove their existence, uniqueness and investigate their conver-
gence properties. which achieve exponential convergence when approximating smooth
functions. We demonstrate that there exists a choice of external weights, for any family
of such RPNNs, with non-polynomial infinitely differentiable activation functions, that
exhibit an exponential convergence rate when approximating any infinitely differentiable
function. Additionally, this chapter presents various strategies for the random genera-
tion of weights in RPNNs. For illustration purposes, we test the proposed RPNN-based
function approximation, with parsimoniously chosen basis functions, across three bench-
mark function approximation problems. Results show that RPNNs achieve comparable
performance to established methods such as Legendre Polynomials, highlighting their
potential for efficient and accurate function approximation.

In Chapter 3, inspired by DeepONets [86] and Chen and Chen (1995) Universal
approximation theorem for operators [111], we introduce Random Projection-based Op-
erator Networks (RandONets): shallow networks with random projections that learn
linear and nonlinear operators.The implementation of RandONets involves: (a) incor-
porating random bases, thus enabling the use of shallow ANNs with a single hidden
layer, where the only unknowns are the output weights of the network’s weighted inner
product; this reduces dramatically the dimensionality of the parameter space; and, based
on this, (b) using established least-squares solvers (e.g., Tikhonov regularization and pre-
conditioned QR decomposition) that offer superior numerical approximation properties
compared to other optimization techniques used in deep-learning. In this chapter, we
prove the universal approximation accuracy of RandONets for approximating nonlinear
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operators and demonstrate their efficiency in approximating linear nonlinear evolution
operators RHS, with a focus on PDEs. We show, that for this particular task, RandONets
outperform, both in terms of numerical approximation accuracy and computational cost,
the “vanilla" DeepONets.

Chapter 4 addresses a new numerical method based on RPNNs with both sigmoid and
radial-basis functions, for the computation of steady-state solutions and the construction
of (one-dimensional) bifurcation diagrams of nonlinear PDEs. For our illustrations, we
considered two benchmark problems, namely (a) the one-dimensional viscous Burgers
with both homogeneous (Dirichlet) and non-homogeneous boundary conditions, and,
(b) the one- and two-dimensional Liouville–Bratu–Gelfand PDEs with homogeneous
Dirichlet boundary conditions. For the one-dimensional Burgers and Bratu PDEs, exact
analytical solutions are available and used for comparison purposes against the numerical
derived solutions. Furthermore, the numerical efficiency (in terms of numerical accuracy,
size of the grid and execution times) of the proposed numerical ML method is compared
against central FD and Galerkin weighted-residuals FEM methods. We show that the
proposed numerical ML method outperforms in terms of numerical accuracy both FD
and FEM methods for medium to large sized grids, while provides equivalent results with
the FEM for low to medium-sized grids. Furthermore, the computational times required
with the proposed ML scheme were comparable and in particular slightly smaller than
the ones required with FEM.

Chapter 5 continues the exploration of RPNNs for solving forward problems. We
present a numerical method based on random projections with Gaussian kernels and
physics-informed neural networks for the numerical solution of initial value problems
(IVPs) of nonlinear stiff ODEs and index-1 DAEs, which may also arise from spatial
discretization of PDEs. The unknown weights between the hidden and output layer are
computed with Newton’s iterations using the Moore–Penrose pseudo-inverse for low
to medium scale and sparse QR decomposition with L2 regularization for medium- to
large-scale systems. Building on previous works on random projections, we also prove
its approximation accuracy. To deal with stiffness and sharp gradients, we propose an
adaptive step-size scheme and address a continuation method for providing good initial
guesses for Newton iterations. The “optimal" bounds of the uniform distribution from
which the values of the shape parameters of the Gaussian kernels are sampled and the
number of basis functions are “parsimoniously" chosen based on bias-variance trade-off
decomposition. To assess the performance of the scheme in terms of both numerical
approximation accuracy and computational cost, we used five benchmark problems (two
index-1 DAEs problems, and three stiff ODEs problems including the Allen–Cahn phase-
field PDE). The efficiency of the scheme was compared against two stiff ODEs/DAEs
solvers, namely, ode15s and ode23t solvers of the MATLAB ODE suite as well as
against deep learning as implemented in the DeepXDE library for the solution of the
Lotka–Volterra ODEs included in the demos of the library.

Chapter 6 shifts the focus to the inverse problem. We present an ML framework
bridging manifold learning, neural networks, Gaussian processes, and Equation-Free
multiscale approach, for the construction of different types of effective ROMs from high-
fidelity data produced by detailed microscopic simulators and the systematic multiscale
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numerical analysis of their emergent dynamics. Key objectives include detecting tipping
points and quantifying the uncertainty of rare events near these critical transitions. We
address the discovery of underlying (global) IPDEs and (targeted) SDEs. We introduce
the use of manifold learning to uncover reduced representations of high-dimensional
data, specifically, DMaps is employed to reveal latent variables that capture the system’s
essential dynamics. Then, we focus on learning Mesoscopic IPDEs via ANNs presenting
a Convolutional approach based on fixed FD stencil, to generate differential features
candidates to learn the IPDE operators. Then we address ARD and the combination
of DMaps with leave-one-out cross-validation to systematically identify the differential
features that contribute the most to the representation of the dynamics. Then as an
alternative to such endeavor, we propose an ML method, inspired by Euler-Maruyama
scheme, to identify mean-field-level SDEs.

In Chapter 7, we demonstrate the application of this framework to three distinct case
studies: (a) the one-dimensional FitzHugh-Nagumo (FHN) PDEs, which describe the
action potential propagation in unmyelinated neurons, simulated at the mesoscopic scale
using a D1Q3 Lattice Boltzmann method; (b) an event-driven, stochastic financial market
ABM describing the mimetic behavior of traders; and (c) a compartmental stochastic
epidemic ABM on an Erdös-Rényi social network. In each case, ML techniques are
employed to recover ROMs, providing new insights into system dynamics and tipping
points. Moreover, we contrast the pros and cons of the different types of surrogate
models and the effort involved in learning them. Importantly, the proposed framework
reveals that, around the tipping points, the emergent dynamics of both benchmark ABM
examples can be effectively described by a one-dimensional SDE, thus revealing the
intrinsic dimensionality of the normal form of the specific type of the tipping point. This
allows a significant reduction in the computational cost of the tasks of interest.

Finally, Chapter 8 summarizes the key contributions of this work and discusses
potential avenues for future research.

To facilitate a smooth presentation of the material presented in this Thesis, some
basic definitions, preliminaries, and methodologies are included in Appendices A, B and
C for a quick reference.

Specifically, in Appendix A, there is an overview of topology, metric spaces, elements
of measure theory and Fourier transform.

In Appendix B, we briefly introduced the fundamental concepts of dynamical systems,
manifolds, bifurcation theory and elements of multiscale modeling.

In Appendix C, to provide a robust framework for our analysis, key ML and data
analysis techniques are briefly discussed.
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2 Rethinking Neural
Networks: a Random
Projection perspective

This chapter explores an innovative approach to neural network architecture through the
lens of random projections. Traditional neural networks face significant challenges during
training, particularly due to the “curse of dimensionality" that arises from optimizing non-
convex loss functions in high-dimensional parameter spaces. As architectures grow larger
and more complex, they become overly parameterized, complicating the optimization
process.

Random projections, alongside fixed basis functions, simplify this challenge by
transforming the optimization problem into a convex one focused solely on the external
weights. This allows for the resolution of linear least-squares problems, which may be
highly ill-conditioned and underdetermined, using specialized numerical techniques such
as Tikhonov regularization, Singular Value Decomposition (SVD), QR decomposition,
and Complete Orthogonal Decomposition (COD) [161].

This perspective not only enhances computational efficiency but also opens new
avenues for model interpretability and generalization.

In the next section, we will first offer a brief overview of ANNs and the challenges
related to their training optimization. Following that, we will present the current state
of the art and review the concept of random projection, highlighting its theoretical foun-
dation rooted in low-distortion embeddings as outlined by the Johnson-Lindenstrauss
(JL) Lemma. We will then present neural network approximations using random pro-
jections, focusing on RPNNs of best Lp approximation. We will prove the existence
and uniqueness of such optimal RPNNs and demonstrate their exponential convergence
when approximating smooth functions. We conclude the chapter with some illustrative
numerical example.
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2.1. Artificial Neural Networks

2.1 Artificial Neural Networks

In this section, we introduce the fundamental concepts of Artificial Neural Networks
(ANNs). ANNs have gained significant popularity due to their versatility in addressing a
wide range of ML tasks, such as classification, regression, clustering, and reinforcement
learning. In particular, they have demonstrated outstanding performance in areas such
as speech recognition, image synthesis, language modeling, and autonomous vehicles
[162, 163, 164, 165, 166].

Composed of interconnected neurons, ANNs loosely simulate the structure and func-
tion of biological neural networks. Indeed, in the 1940s, W. McCulloch and W. Pitts
[167] developed mathematical models that, in a highly simplified manner, replicated the
functioning of a biological neuron, and it is to these models that the theory of neural
networks can be traced back. In recent years, they have proven to be highly effective in
improving the efficiency and accuracy of complex numerical and optimization problems
across various fields, including finance, medical science, and engineering [168, 169, 66].

In mathematical and computational contexts, ANNs have become integral to func-
tion approximation for solving a range of numerical and mathematical problems, in-
cluding DEs, system identification, and physics-informed solutions, as discussed earlier
[113, 114, 116, 89, 65, 95, 66] They are also continually explored for advanced numer-
ical analysis, artificial intelligence tasks, and emerging technologies. Considering the
numerous numerical applications where ANNs have proven effective, it is important to
explore the theoretical foundations that justify their broad use. Moving from practical
applications to theoretical insights, it becomes clear that the success of ANNs across
various fields is grounded in solid mathematical principles. Contrary to the view of
neural networks as “magical" black boxes, a significant body of often underappreci-
ated theoretical work supports their effectiveness. The universal approximation theorem
[170, 171, 172, 173, 174, 175, 153] establishes that an ANN with a single (or multi-
ple) hidden layer(s) can approximate any continuous function within a bounded domain
to arbitrary accuracy, provided the number of hidden layer nodes is sufficiently large.
This reflects the density property of ANN-based functions in C(Rd), with respect to the
topology of uniform convergence on compact sets.

Recently, numerous results have expanded the approximation capabilities of ANNs
to cover a broader range of function spaces. These advancements include approximation
in Sobolev spaces [176], band-limited functions [177], Barron spaces [178], and Hölder
spaces [179].

Despite significant empirical and theoretical progress, concerns persist that methods
based on DNNs currently do not fully meet the traditional rigorous standards of stability,
convergence, and efficiency expected in computational science and numerical analysis.
While the theoretical foundations of DNNs highlight their ability to represent a broad
class of functions, practical implementation remains challenging due to the non-convex
nature of the optimization problem during network training.

The non-convex nature of the optimization landscape leads to challenges like saddle
points, local minima, and flat regions, which can hinder the convergence of optimization
algorithms. As a result, there remains a significant gap between the theoretical potential
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of DNNs and their practical performance [147, 148, 149, 150, 151]

2.1.1 Architectures, interaction scheme and activation functions
An ANN consists of interconnected nodes, or neurons, which process input data to
produce output through a series of functions. The process can be broken down into two
main steps. First, there is an interaction scheme, combining multiple inputs from other
neurons to produce a scalar output. The most common interaction scheme is the weighted
sum, where each input is multiplied by a corresponding weight. However, the interaction
scheme can vary based on the network type. For example, Radial Basis Function (RBF)
networks rely on distance-based interactions [180, 95], Convolutional Neural Networks
[112, 162] use convolutions, DeepONets employ weighted inner products [86, 157], Long
Short-Term Memory (LSTM) networks utilize recurrent links [76, 74], and Transformers
incorporate attention mechanisms [164, 166]. Then, after the interaction scheme, the
output from the interaction scheme is fed into an activation function, which transforms
it into the neuron’s final output.

ANNs can adopt various architectures, such as deep feedforward networks (DFNN)
[147, 149, 181], perceptrons [182], convolutional networks [112, 162], recurrent net-
works [183, 74], and autoencoders [72, 138, 139]. More advanced structures include
Transformers [164, 166], Generative Adversarial Networks (GANs) [165], DeepONets
[86, 157] and LSTM networks [76, 74], each designed to handle different types of tasks.

In the next section, we will focus specifically on FNNs.

2.1.2 Feedforward Neural Networks (FNNs)
FNNs are the simplest and most common architecture, particularly effective for super-
vised learning tasks such as regression, classification, forecasting, and model identifica-
tion. These networks are characterized by their layered structure, where computing units
(neurons) are arranged in multiple layers, each unidirectionally connected to the previous
and next layers. In 1958, Frank Rosenblatt [184] expanded on the ideas initially proposed
by W. McCulloch and W. Pitts with his invention of the perceptron, the first algorithm for
training single-layer neural networks. Despite initial enthusiasm, the limitations of early
neural networks, such as their inability to solve non-linear problems, were highlighted
by M. Minsky and S. Papert in 1969 [185], significantly slowing progress in the field. It
wasn’t until the development of the back-propagation algorithm in 1986 [186] that neural
networks, especially FNNs, experienced a resurgence.

In an FNN, neurons are usually distributed across L + 2 layers, indexed by l =
0, 1, . . . ,L,L+1. WhenL ≥ 2, the network is typically referred to as a deep feedforward
network (DFFN). The first layer, l = 0, is known as the input layer, while the last layer,
l = L + 1, is the output layer. The layers between the input and output, indexed by
l = 1, . . . ,L, are called hidden layers. Each l-th layer consists of Nl neurons, which
produce output values x(l) = (x(l)

1 , . . . , x
(l)
Nl

) ∈ RNl and are fully connected to the nodes
of the previous layer ((l − 1)-th layer) via weighted connections. The weights between
the (l − 1)-th and l-th layers are stored in a matrix A(l) ∈ RNl×Nl−1 . Additionally, a
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bias vector β(l) = (β(l)
1 , . . . , β

(l)
Nl

) ∈ RNl is typically associated with each layer.
The role of hidden layers is often viewed as encoding the input data into NL new

features, thus acting as a filter that transforms the input. The final output layer linearly
combines theseNL values to produce the network’s final output. In this way, the network
processes the input into new representations that, when combined with a fixed weight
vector, determine the behavior of the underlying network function.

Let us now consider an DFNN with an N0-dimensional input y(0), and L hidden
layers, each containingNl neurons. The output y(l)

j of the j-th neuron (j = 1, . . . , Nl) in
the l-th layer (l = 1, . . . , L) is obtained by applying the activation function ψ : R → R
to a linear combination of the outputs from the neurons in the previous layer:

y
(l)
j = ψ

⎛⎝Nl−1∑︂
i=1

w
(l)
ji y

(l−1)
i + b

(l)
j

⎞⎠ , (2.1)

wherew(l)
ji represents the weight of the connection between the i-th neuron of the (l−1)-

th layer and the j-th neuron of the l-th layer, and b(l)
j denotes the bias term.

If we denote by Φ(l) : y(l−1) ∈ RNl−1 ↦→ y(l) ∈ RNl the mapping from the (l−1)-th
layer to the l-th layer, the final output y(L+1) of the network can be expressed as the
composition of all these layer mappings:

y(L+1) = Φ(L+1) ◦ · · · ◦ Φ(1)(y(0)). (2.2)

The remarkable popularity of DFNNs is largely attributed to their ability to ap-
proximate any (piece-wise) continuous multivariate function (partially) with arbitrary
precision, as guaranteed by the celebrated Universal Approximation Theorem [171, 172,
180, 174, 175, 111]. This theorem implies that any failure of a network to perform a
task must arise from inadequate selection or calibration of weights and biases, or from
an insufficient number of neurons in the hidden layers.

In the next section, we will dive into the details of such a theorem.

2.1.3 Universal approximation theorem
Numerous works have explored the approximation capabilities of neural networks for
continuous functions of multiple variables. Originally inspired by Kolmogorov’s su-
perposition theorem (1957) [187], the late 1980s produced numerous significant results
in neural network approximation theory. Wieland and Leighton (1987) [188] studied
the ability of networks with one or two hidden layers, while Irie and Miyake (1988)
[170] derived an integral representation formula with a predefined kernel, which could
be realized using a three-layer neural network. Gallant (1988) [189] established that
ANNs using the cosine squasher activation function possess the density property and
can approximate any Fourier series. In 1989, several significant contributions emerged.
Carroll and Dickinson [190] utilized the inverse Radon transform, while Cybenko [171]
applied the Hahn-Banach and Riesz representation theorems to demonstrate uniform
convergence on compact sets with continuous sigmoid functions. Funahashi (1989)
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Chapter 2. Rethinking Neural Networks: a Random Projection perspective

[173] approximated the integral representation of Miyake and Irie using a finite sum
with a kernel expressible as the difference of two sigmoid functions. Hornik et al. [172]
employed the Stone-Weierstrass theorem, using trigonometric functions to establish their
results. Independently, Mhaskar and Micchelli (1992) [174] and Leshno et al. (1993)
[175] provided a conclusive result, proving that the necessary and sufficient condition
for a neural network to have universal approximation is that its activation function must
be non-polynomial.

In the following, we will focus on the approach of Chen and Chen (1995) [111],
where Tauber-Wiener functions and related techniques are used to derive a comprehensive
universal approximation result.

Definition 2.1.1 (Tauber-Wiener (TW) function). A function g : R→ R (continuous or
discontinuous) is called a Tauber-Wiener (TW) function if all linear combinations of the
form

N∑︂
i=1

cig(λix+ θi), λi ∈ R, θi ∈ R, ci ∈ R, i = 1, 2, . . . , N, (2.3)

are dense in C[a, b] for any interval [a, b].

We will prove the following theorem:

Theorem 2.1.1 (universal approximation). Suppose that g is a continuous function and
g ∈ S ′(R). Then g ∈ (TW ) if and only if g is not a polynomial.

Proof. We will prove by contradiction. Suppose the set of all linear combinations∑︁N
i=1 cig(λix + θi) is not dense in C[a, b]. Then, by the Hahn-Banach extension

theorem and the Riesz representation of continuous linear functionals, there exists a
signed Borel measure dµ with supp(dµ) ⊆ [a, b], such that∫︂

R
g(λx+ θ)dµ(x) = 0 (2.4)

for all λ ̸= 0 and θ ∈ R. Let w ∈ S(R), a Schwartz rapidly decreasing function, then∫︂
R
w(θ)dθ

∫︂
g(λx+ θ)dµ(x) = 0. (2.5)

Let λx+ θ = u, and change the order of integration. We obtain∫︂
R
g(u)

∫︂
R
w(θ)dµ

(︃
u− θ
λ

)︃
= 0, (2.6)

which is equivalent to
ĝ
(︁
ŵ(·)dµ̂(λ·)

)︁
= 0, (2.7)

where ĝ denotes the Fourier transform of g in the sense of tempered distributions. To make
sense of the left-hand side of the above equation, we need to show that ŵ(t)dµ̂(λt) ∈
S(R).
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Since supp(dµ) ⊆ [a, b], it is straightforward to show that dµ̂(t) ∈ C∞(R). For each
k = 1, 2, . . . , there exists a constant ck such that⃓⃓⃓⃓

∂k

∂tk
dµ̂(t)

⃓⃓⃓⃓
≤ ck. (2.8)

Consequently, ŵ(t)dµ̂(t) ∈ S(R). Since dµ ̸≡ 0 and dµ̂(t) ∈ C∞(R), there
exists some t0 ̸= 0 with a neighborhood (t0 − δ, t0 + δ) such that dµ̂(t) ̸= 0 for
all t ∈ (t0 − δ, t0 + δ). Now, if t1 ̸= 0, let λ = t0/t1, then dµ̂(λt) ̸= 0 for all
t ∈ (t1−δ/λ, t1 +δ/λ). Take any ŵ ∈ C∞(t0−δ/2λ, t0 +δ/2λ), then ŵ(t)/dµ̂(λt) ∈
S(R), and by Eq. (2.7), we obtain

ĝ(ŵ(·)) = ĝ

(︃
ŵ(·)
dµ̂(λ·)

dµ̂(λ·)
)︃

= 0, (2.9)

This argument shows that for any fixed point t∗, there exists a neighborhood [t∗ −
η, t∗ + η] such that ĝ(ŵ(λ)) = 0 for all ŵ with compact support in [t∗ − η, t∗ + η],
implying supp(g) ⊆ {0}. By the theory of distributions, ĝ must be a linear combination
of Dirac delta functions and their derivatives, which implies that ĝ is a polynomial.

For completeness, we also present the following theorem by Chen and Chen [111]:

Theorem 2.1.2 (Universal approximation for functions[111]). Suppose K is a compact
set in Rd, U is a compact set in C(K) and ψ is a Tauber-Wiener function, then ∀f ∈ U
and any ϵ > 0, there exist scaling factors {ξi}N

i=1 and shifts {θi}N
i=1 both independent of

f , and also coefficients {wi[f ]}N
i=1 depending on f , such that⃦⃦⃦⃦

⃦f(x)−
N∑︂

i=1
wi[f ]ψ(ξix+ θi)

⃦⃦⃦⃦
⃦

∞

< ϵ. (2.10)

Moreover, the coefficient wi[f ] are continuous functionals on U .

2.1.4 Training process
Training an FNN involves finding an optimal (most of the times is just suboptimal)
configuration of weights and biases that minimizes a predefined loss function, which
quantifies the discrepancy between the predicted output of the network and the desired
output. This process is framed as solving a high-dimensional, non-convex optimization
problem. Various gradient-based methods are typically employed for this task, such
as Stochastic Gradient Descent (SGD), momentum-based methods, Nesterov acceler-
ation, and adaptive methods like ADAM (Adaptive Moment Estimation), RMSprop,
and AdaGrad. Additionally, second-order methods, including Newton-like or quasi-
Newton approaches like Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm and the
Levenberg-Marquardt algorithm (LMA), are also applied. Methods like the scaled con-
jugate gradient are also widely used and suggest in practical software implementations,
such as in MATLAB.
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In regression problems, the loss function is often defined as the (Mean Squared Error)
MSE between the network’s output and the target output for a set ofM training samples.
Let y(L+1)

k represent the predicted output of the network for the k-th input sample y
(0)
k ,

and let dk be the corresponding desired output. The MSE loss function is expressed as:

E = 1
M

M∑︂
k=1
||dk − y

(L+1)
k ||22. (2.11)

Since one of the main task of a neural network is the generalization, Foresee and
Hagan ([191]) showed that adding the L2–regularization term Eω =

∑︁N
j=1 θ

2
j , where θj

is a trainable parameter of the network, to the cost function will maximize the posterior
probability based on Bayes’ rule. Hence, the total cost function is:

Etotal = E + λEw, (2.12)

where λ is the regularization parameter that has to be tuned.
Regularization mitigates the risk of overfitting by constraining the complexity of

the model. In particular, L2–regularization discourages large weights, thus improving
generalization. Conversely,L1 regularization techniques, like the LASSO algorithm, can
be employed to promote sparsity in the optimized weights or parameters. For example,
[149] demonstrated the superior performance of L1 regularization in simple regression
tasks.

Solving the problem using the least-squares procedure involves finding the parameter
values pj (including weights and biases) that minimize the total error. This is done
through a method called gradient descent, which updates the weights proportionally to
the negative of the partial derivative of the total error with respect to each parameter for
the current input y(0)

k :

∆θj = −γ ∂E
(k)

∂θj
, (2.13)

where γ is a proportionality constant called the learning rate, such that 0 < γ < 1.
The computations of the partial derivatives of the loss function with respect to each
weight and bias, even for deep architecture, can be straightforwardly unfolded by the use
of the backpropagation algorithm [186], by applying the chain rule across the layers of
the network.

Examples of Gradient-based Optimization methods. One of the simplest approaches
for training an FNN is SGD. Unlike traditional gradient descent, which computes the
gradient using the entire dataset, SGD uses only a single randomly selected data point
(or a small batch of points) at each iteration. Given the large dimensionality of neural
networks, first-order methods like SGD are popular due to their computational efficiency.

However, standard SGD can converge very slowly and may also get stuck in local
minima. To mitigate this, several improved optimization techniques have been developed:
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• Momentum: Adds a fraction (0 < µ < 1) of the previous update v(t)
j to the current

one v(t+1)
j , helping to accelerate convergence by dampening oscillations in the

gradient. Thus:

v
(t+1)
j = µv

(t)
j − γ∇θE(θ(t)

j ); θ
(t+1)
j = θ

(t)
j + v

(t+1)
j . (2.14)

• Nesterov Acceleration: A variant of momentum that looks ahead by computing
gradients at an anticipated future point, leading to better convergence rates, thus
computing v(t+1)

j = µv
(t)
j − γ∇θE(θ(t)

j + µv
(t)
j )

• ADAM (Adaptive Moment Estimation): Combines the benefits of both momentum
and adaptive learning rates. It adjusts the learning rate for each parameter individ-
ually based on estimates of the first and second moments (mean and variance) of
the gradients.

The ADAM optimizer relies on the running estimates of the first and second moments
of the gradient:

mt = β1mt−1 + (1− β1)∇Et, v
(t)
j = β2v

(t−1)
j + (1− β2)∇E2

t , (2.15)

where β1 and β2 are exponential decay rates (often set to 0.9 and 0.999, respectively).
Then the bias-corrected moments are calculated as:

m̂t = mt

1− βt
1
, v̂t =

v
(t)
j

1− βt
2
. (2.16)

Finally, the parameter update rule in ADAM is given by:

θ
(t)
j = θ

(t−1)
j − α m̂t√

v̂t + ϵ
, (2.17)

where α is the learning rate, and ϵ is a small constant to avoid division by zero.
ADAM is widely used due to its robust performance across a variety of tasks and the

ability to handle sparse gradients.

Quasi-Newton schemes. Second-order methods, such as Newton-like or quasi-Newton
methods, are more powerful in theory, as they consider the curvature of the loss function
to make more informed updates. These methods, however, are computationally expensive
due to the need to compute or approximate the Hessian matrix of second-order derivatives.

The Levenberg-Marquardt algorithm (LMA) is a widely used quasi-Newton method,
particularly effective for training neural networks of moderate size. It combines elements
of both the Gauss-Newton algorithm and gradient descent, allowing it to transition
smoothly between the two methods. LMA is more robust than the Gauss-Newton
method, making it more likely to find a solution even when starting far from the optimal
minimum. However, for well-behaved functions and good initial guesses, LMA can be
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slower than Gauss-Newton. It can also be interpreted as a Gauss-Newton method with a
trust region approach.

LMA approximates the Hessian matrix Hθ of the loss function using the Jacobian
matrix Jθ, which contains partial derivatives of the network errors with respect to the
parameters. Specifically, the Hessian is approximated as:

Hθ ≈ JT
θ Jθ. (2.18)

This approximation leads to a simplified update rule for the parameters:

θ ← θ − (JT
θ Jθ + µI)−1JT

θ e, (2.19)

where e is the vector of network errors, θ is the vector of all trainable parameters (weights
and biases), µ is a damping factor, and I is the identity matrix. The damping factor µ
controls the update strategy, interpolating between gradient descent and Gauss-Newton
steps. The LMA is efficient for smaller networks but becomes computationally expensive
for larger architectures due to the need to compute the Jacobian.

In MATLAB, the LMA is commonly used and is the default method for training networks
that are not too large. It is particularly effective for function approximation tasks, where
the training set is not overly large, and high precision is required.

2.1.5 Physics-informed Neural Networks (PINNs)
Physics-informed machine learning (PIML) algorithms are universal function approxi-
mators that incorporate governing physical laws directly into the learning process. By
embedding this domain knowledge, they address the challenge of limited data availability
often encountered in biological and engineering systems, where traditional ML models
struggle to provide robust and reliable solutions.

In this section, and for the completeness of the presentation, we give a very brief
introduction to the basic concept of PIML for the solution of DEs in the form of PDEs.
Although, the concept of PIML can be extended to generic solution of nonlinear opera-
tors/functionals [66, 70, 125, 71].
Let’s assume a set of nx points xi ∈ Ω ⊂ Rd of the independent (spatial) variables which
define the mesh in the domain Ω, n∂Ω points along the boundary ∂Ω of the domain and
nt points in the time interval, where the solution is sought. For our illustrations, let’s
consider a time-dependent PDE in the form of

∂u

∂t
= L(x, u,∇u,∇2u), (2.20)

where L is the partial differential operator acting on u satisfying the boundary conditions
Bu = g, in ∂Ω, where B is the boundary differential operator. Then, the solution with
ML of the above PDE involves the solution of a minimization problem in the form:

min
P ,Q

E(P ,Q) :=
nx∑︂
i=1

nt∑︂
j=1

⃦⃦⃦⃦
∂Ψ
∂t

(·)− L(xi,Ψ(·),∇Ψ(·),∇2Ψ(·))
⃦⃦⃦⃦2

(2.21)
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+
n∂Ω∑︂
j=1
∥BΨ(·)− g∥2

,

where Ψ(·) := Ψ(xi, tj ,N (xi, tj ,P ,Q)) represents an ML constructed function ap-
proximating the solution u at xi at time tj and N (xi, tj ,P ,Q) is an ML algorithm; P
contains the parameters of the ML scheme (e.g., for a neural network the internal weights
W , the biases B, the weights between the last hidden and the output layer W o), Q
contains the hyperparameters (e.g., the parameters of the activation functions for a neural
network, the learning rate, etc.). In order to solve the optimization problem (2.21), one
usually needs quantities such as the derivatives of N (x,P ,Q) with respect to t,x and
the parameters of the ML scheme, such as the weights and biases. These can be obtained
numerically using FD or other approximation schemes, or by symbolic or automatic
differentiation [127, 93].

The above approach can be implemented also for solving systems of ODEs/DAEs as
these may also arise by discretizing in space PDEs. For example, if we consider a 1D
PDE and a grid of nx equally-spaced points xi, i = 1, . . . , nx, with a space-step ∆x,
we can discretize the profile in space and approximate the spatial derivatives using e.g.,
central FD to get:

∂u(t, x)
∂x

= ui+1(t)− ui−1(t)
2∆x ,

∂2u(t, x)
∂x2 = ui+1(t)− 2ui(t) + ui−1(t)

∆x2 . (2.22)

Therefore, in this case, Eq. (2.20) can be reduced to a system of nx DAEs, given by:

dui(t)
dt

= L̃(xi, u1(t), . . . , unx(t)), i = 2, . . . , (nx − 1)

B̃(u1) = g(t, x1), B̃(unx = g(t, xnx),
(2.23)

where L̃, B̃ correspond to the discretization of the operators L and B, respectively
with FD. Then, the solution of the discretized system can be sought using nx (space-
independent) ML constructed functions Ψi(·) := Ψi(tj ,Ni(t,P ,Q)) approximating the
solution ui at time tj . Thus, the minimization problem given by Eq. (2.20) reduces to:

min
P ,Q

E(P ,Q) :=
nx∑︂
i=1

nt∑︂
j=1

⃦⃦⃦⃦
dΨi

dt
(·)− L̃(xi,Ψ1(·), . . . ,Ψnx

(·))
⃦⃦⃦⃦2

+ (2.24)

+
⃦⃦
B̃Ψ1(·)− g(tj , x1)

⃦⃦2 +
⃦⃦
B̃Ψnx

(·)− g(tj , xnx
)
⃦⃦2
.

For the solution of the above optimization problem, one can compute the required
numerical quantities such as the gradients with respect to the input and the unknown
parameters; Yet, for deep learning schemes, but even for the simple case of single layer
networks, when the number of hidden nodes is large, the solution of the resulting large-
scale optimization problem is known to be difficult, often resulting in poor solutions as
iterations stuck in local minima (for a detailed discussion about these problems, see, e.g.,
[147, 150, 151].)

The approach discussed above can be extended to a wide variety of functional prob-
lems beyond just PDEs, ODEs, and DAEs. This includes a variety of problems such
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as integral equations, integro-differential equations, optimal control problems, trans-
formations to normal forms [124], one-step observer problems [71], one-step feedback
linearization control [70], and identifying low-dimensional slow-invariant manifolds
[125].

This flexibility makes PIML applicable across a broad range of scientific computing
disciplines, from classical physics and engineering to more complex fields like optimal
control and bifurcation theory.

2.1.6 Challenges in Training Neural Networks
Training neural networks poses significant challenges, primarily due to the non-convex
nature of the underlying optimization problem. The goal is to minimize a loss func-
tion (such as the MSE) by adjusting the network’s weights and biases. However, this
optimization problem is highly complex, as the solution space is filled with numerous
local minima, especially in over-parameterized deep networks. Indeed, the number of
local minima could be so high, that makes the probability of finding a globally optimal
solution, among the many other local minima, close to zero in practice, particularly in
deep architectures. Indeed, global optimization for non-convex problems is NP-hard, as
shown by Murty and Kabadi (1985) [192], and training neural networks has been proven,
according to Blum and Rivest (1988) [193], to be NP-complete, which is the most dif-
ficult class of NP-hard problem. This makes finding optimal solutions computationally
prohibitive in practice and within a reasonable time-frame.

There is an inherent paradox in the foundations of neural network training: while the
celebrated universal approximation theorem ensures that a neural network can approxi-
mate any continuous function to an arbitrary precision, the theorem lacks a constructive
proof, meaning it does not provide a method to find the optimal weights. Addition-
ally, achieving this optimal solution within polynomial time is not feasible due to the
NP-completeness of the problem. In practice, hyperparameters such as the number
of neurons N number of layers L, learning rate γ, and batch size must be carefully
tuned through extensive trial and error, which adds substantial complexity to the training
process. Initialization of weights plays a crucial role, as poor initializations can lead
to suboptimal solutions or significantly slow convergence. Therefore, training neural
networks often requires multiple trials, each time exploring different configurations of
network architectures and hyperparameters, further amplifying the computational cost.

Furthermore, the training of large-scale neural networks frequently requires exten-
sive computational resources. Given the high-dimensional parameter space and the need
for complex operations, modern neural networks often demand parallel hardware archi-
tectures, GPU-based systems, clusters of computers, or high-performance computing
environments to train within a feasible time frame. Even with these resources, con-
vergence remains slow, with training times often extending to hours or even days for
large-scale networks, without a guarantee of reaching a truly optimal solution.

In the case of PINNs, the challenges of training become even more pronounced.
PINNs integrate physical laws directly into the loss function, adding constraints derived
from ODEs and PDEs. This results in a more complicated loss landscape, introducing
additional stiffness, sharp gradients, and nonlinearities, which further complicate the op-
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timization process. These factors exacerbate the non-convexity of the problem, hindering
convergence even for relatively simple stiff low-dimensional ODEs.

Moreover, PINNs rely on penalties in the loss function to enforce initial and boundary
conditions, which can skew the training process. For example, the network may overly
focus on satisfying boundary or initial conditions at the expense of accurately solving the
underlying PDE, or vice versa. Balancing these competing objectives is not trivial and
further adds to the complexity of training. Efforts to bypass the penalty-based approach
with unconstrained PINN-based methods (where the boundary conditions are encoded
through transformed ansatz functions) have shown limitations in terms of accuracy,
especially when handling complex geometries. These methods require the tuning of
additional distance-based functions, which complicates the definition of the scheme
itself.

The “curse of dimensionality" also impacts deep networks. While theoretically, neu-
ral networks should converge with complexity O(N) in every dimension, as shown by
Barron (1993) [153], the parameter space grows exponentially with the input dimension,
making the search for optimal solutions even more difficult. In high-dimensional spaces,
this exacerbates the computational demands, often requiring extensive computational
resources such as GPU-based hardware or high-performance computing clusters to per-
form training in a reasonable timeframe. Even with these resources, convergence can be
slow, often taking hours or even days for relatively large architectures, with no guarantee
of achieving more than suboptimal solutions.

Furthermore, in comparison to classical numerical analysis methods, neural net-
works often fall short in interpolation tasks, where methods like orthogonal polynomials,
Chebyshev, and Legendre polynomials can achieve exponential convergence rates and
are computationally efficient when combined with techniques like the Fast Fourier Trans-
form (FFT). When solving forward problems, neural networks also lack the numerical
accuracy of traditional methods, often struggling to achieve better than 10−4 in terms
of L2 error, further emphasizing their limitations in both accuracy and computational
efficiency [149].

In conclusion, while neural networks offer great flexibility and powerful learning
capabilities, they are computationally demanding and prone to several optimization
challenges. There is a growing need to develop new algorithms that combine the strengths
of classical numerical analysis with ML techniques. The next sections will explore one
such approach, where random projections and random features are leveraged to create
efficient hybrid models that challenge the established flagships of numerical analysis
solvers.
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2.2 State-of-the-art of Random Projections

A more computationally efficient alternative to the above ML architectures is the Random
Projection Neural Networks (RPNNs), which leverage fixed internal weights and biases
to speed up calculations.

RPNNs are a subset of ANNs, which include Random Weights Neural Networks
(RWNN) [194], Random Vector Functional Link Networks (RVFLN) [195, 196], Reser-
voir Computing (RC) [197], Extreme Learning Machines (ELM) [198], and Random
Fourier Features Networks (RFFN) [158, 159]. The origins of this idea can be traced
back to the Gamba perceptron, first introduced by Frank Rosenblatt [184] and reviewed
by [185]. These methods share fundamental principles and have been used to mitigate
the “curse of dimensionality” during training.

RPNNs have shown comparable or even superior accuracy in some cases, particularly
for low-dimensional ODEs/DAEs, while significantly reducing training time compared
to state-of-the-art numerical methods [69, 94, 91, 95, 67, 125, 181, 123].

An early example of random projection is found in the proof of the Johnson-
Lindenstrauss (JL) theorem [199], which demonstrates that Euclidean distances can
be preserved through a linear projection. More broadly, the hidden layers of RPNNs
can be viewed as nonlinear random projections of input data. As shown in [158], these
nonlinear projections are capable of preserving kernel distances, enabling the discovery
of underlying nonlinear data structures. The core idea of RPNNs is to randomly predefine
the weights between the input and hidden layers, along with the biases and activation
function parameters. The weights connecting the last hidden layer to the output are
then computed by solving a least-squares problem [198, 69, 123]. This least-squares
solution constitutes the entire training process, eliminating the need for iterative training
common in other ML approaches. Further motivation behind this idea, can be found
in theoretical extensions of universal approximation to random fixed basis functions
[153, 196, 198, 156, 157].

Within this context, in Fabiani et al. (2021) [69], the authors demonstrate for the
first time that for low-dimensional nonlinear stationary PDEs, physics-informed ran-
dom projection neural networks (PIRPNNs), trained using a regularized Gauss-Newton
scheme, surpass FD and FEM in terms of convergence, accuracy, and computational
efficiency. Dong and Li (2021) [91] introduced a method utilizing Extreme Learning
Machines to solve time-dependent DEs through domain decomposition. The scheme
was validated using the linear and nonlinear 1D Helmholtz equations, the 1D diffusion
equation, and the 1D viscous Burger’s equation. Additionally, a comparison was made
with FEM regarding maximum error approximation and computational time. In Dong
and Yang (2022) [94], the authors explore the use of ELM for PDEs. They propose a
method to optimize the random initialization of weights in the hidden layer, improving
ELM performance. Their approach outperforms traditional methods, such as the FEM,
in solving both linear and nonlinear PDEs. In Fabiani et al. (2023) [95], the authors
show that the integration of RPNNs with advanced numerical analysis and continuation
methods outperforms conventional stiff time integrators for both ODEs and DAEs. In
Bolager et al. (2024) [181], have proposed a gradient-based data-driven approach for
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efficiently sampling weights of RPNNs in high-dimensional inputs, further extending a
geometric approach proposed by Galaris et al. (2022) [45]. In Datar et al. (2024) [200],
the authors propose using random sampling techniques for hidden weights and biases in
neural networks to solve PDEs, outperforming traditional gradient-based optimization in
both training time and accuracy. Their method excels in both time-dependent and static
PDEs, leveraging neural basis functions for the spatial domain.

Overall, RPNNs represent a promising advancement in training ANNs, showing also
promising performance in solving PDEs in both computational efficiency and accuracy
over traditional methods. As ongoing research continues to refine weight sampling
techniques and integration with advanced numerical strategies, RPNNs are poised to
play a crucial role in future computational science and engineering applications.

2.3 Preliminaries on Linear Random Projection
A key result connecting the conceptually equivalent methods mentioned above is the
well-known Johnson-Lindenstrauss (JL) Lemma [199]. This lemma asserts that there
exists an approximate isometry map F : Rd → Rk for input data x ∈ Rn, induced by a
random matrix R, given by:

F (x) = 1√
k
Rx, (2.25)

whereR = [Rij ] ∈ Rk×d is a random matrix with entries drawn i.i.d. from a normal
distribution.

By projection, we refer to the case where, given a data point x ∈ Rd and a set of
p vectors {u1, . . . ,up} with p ≪ d, arranged as columns in the matrix U ∈ Rd×p, the
projection of x onto the column space of U is:

x̂ = Uα, where α = (U⊤U)−1U⊤x. (2.26)

The coefficients α are determined by ensuring that the reconstruction residual, r =
x − x̂, is orthogonal to the space spanned by U . This aligns with the formula for
coefficients in linear regression. Furthermore, the projected point x̂ only coincides with
the original point x if x ∈ span(U).

In random projection, data is projected using a matrix with randomly sampled entries,
independent of the data itself. Unlike PCA, which constructs projections based on
data characteristics, random projection does not necessitate learning from the data.
Nevertheless, it effectively preserves geometric properties in an approximate manner,
making it a valuable technique in dimensionality reduction and data analysis.

The JL lemma justifies why this random projection approach works.

Theorem 2.3.1 (Johnson and Lindenstrauss). LetX be a set of n points in Rd. Then, for
any ϵ ∈ (0, 1) and k ∈ N such that k ≥ O

(︁ ln n
ϵ2

)︁
, there exists a mapping F : Rd → Rk

such that

(1− ϵ)∥u− v∥2 ≤ ∥F (u)− F (v)∥2 ≤ (1 + ϵ)∥u− v∥2 ∀u,v ∈ X . (2.27)
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The proof of this theorem, while deterministic, utilizes probabilistic methods along-
side Kirszbraun’s theorem, resulting in an extension mapping [199]. One such embed-
ding is represented by a linear projection matrix with randomly generated elements, as
formalized in the following lemma.

Lemma 2.3.1. Let X be a set of n points in Rd, ϵ ∈ (0, 1), and let F (u) be the random
projection defined by

F (u) = 1√
k
Ru, u ∈ Rd,

whereR = [rij ] ∈ Rk×d has entries that are i.i.d. random variables drawn from a normal
distribution. Then, for all u ∈ X ,

(1− ϵ)∥u∥2 ≤ ∥F (u)∥2 ≤ (1 + ϵ)∥u∥2

holds with probability p ≥ 1− 2 exp
(︁
−(ϵ2 − ϵ3) k

4
)︁
.

Proof. Here, we give only a sketch of the proof. Let be R a matrix with rows
(R1, . . . ,Rk)T ∈ Rk×d, with elements rij ∼ N (0, 1). Note that Ri are random
vectors. Let u ∈ Rd. First, we consider the norm of the transformation, and we obtain:

∥ 1√
k
Ru∥2

2 = 1
k

k∑︂
i=1

(< Ri,u >)2. (2.28)

Then we consider the mean value:

E∥ 1√
k
Ru∥2

2 = 1
k

k∑︂
i=1

E[(< Ri,u >)2] = E[(< Ri,u >)2]. (2.29)

Now, let us recall that the sum of two Gaussian distribution is another Gaussian distri-
bution, i.e., with an abuse of notationN (µ1, σ

2
1) +N (µ2, σ

2
2) ∼ N (µ1 + µ2, σ

2
1 + σ2

2).
Therefore:

⟨Ri,u⟩ = ri1u1 + ri2u2 + . . .+ ridud ∼
∼ N (0, u2

1) +N (0, u2
2) + . . .+N (0, u2

d) ∼ N (0, ∥u∥2
2)

(2.30)

From the above, and combining with Eq. (2.29), we obtain that:

E
⃦⃦⃦⃦

1√
k

Ru

⃦⃦⃦⃦2

2
= E

[︁
⟨Ri,u⟩2

]︁
= ∥u∥2

2. (2.31)

In particular, Eq. (2.31) imply that the norm of the random transformation, as in Eq.
(2.28), is a Chi-squared random variableZ with k–degrees of freedom. Then the theorem
holds following the next lemma about the fact that The chi-squared distribution exhibits
strong concentration around its mean.

37



2.4. Nonlinear random projections

Lemma 2.3.2. LetZ be a Chi-squared random variable with k degrees of freedom, then:

P [|E[Z]− Z| ≥ ϵE[Z]] ≤ 2 exp
(︃
−kϵ

2

8

)︃
. (2.32)

Similar results have been demonstrated for random projections using distributions
other than the normal distribution (e.g., see [201, 202]).

2.4 Nonlinear random projections
Linear dimensionality reduction techniques such as SVD and Principal Component Anal-
ysis (PCA) use a projection matrix to transform data into a lower-dimensional space, either
to enhance data representation or to distinguish classes more effectively. Interestingly,
random projection methods demonstrate that it is not always necessary to learn this pro-
jection matrix; instead, sampling its elements randomly can still preserve the geometric
properties of the data, as justified by the Johnson-Lindenstrauss (JL) theorem.

Notwithstanding, constructing a feature space (x → F (x)) that aims at preserving
Euclidean distance may not consistently constitute the optimal approach when under-
taking ML tasks. In this context, the effectiveness of nonlinear explicit random lifting
operator, as realized by the hidden layer(s) of RPNNs, in preserving kernel distances
has been investigated in detail in [158, 159]. Besides, as it has been shown (see, e.g.,
[153, 196, 203]), appropriately constructed nonlinear random projections may outper-
form such simple linear random projections.

However, nonlinear random projection involves more complex theoretical analysis.
This type of projection can be viewed as a linear random projection followed by a
nonlinear transformation. Two foundational studies on nonlinear random projection are
the Random Fourier Features (RFF) method by Rahimi and Recht (2007) [158] and the
Random Kitchen Sinks (RKS) approach by Rahimi and Recht (2008) [159].

When data naturally reside on non-linear structures or manifolds, applying conven-
tional linear methods directly in the original space is often ineffective. This is because
linear models cannot capture the underlying geometric or topological properties of the
data.

In ML, the kernel trick is a common approach that is employed to implicitly map
data into a high-dimensional, potentially infinite-dimensional space, where complex,
non-linear relationships between data points can be captured by linear methods. In such
spaces, every function behaves linearly, and thus the linear separation or regression of
data points becomes feasible.

The kernel trick facilitates the generation of features for algorithms that rely solely
on the inner product between pairs of input vectors, i.e., ⟨ϕ(u), ϕ(v)⟩ = K(u,v),
where ϕ represents an implicit feature mapping. However, the use of large training
datasets results in significant computational and storage costs. The computation of
kernels is computationally intensive due to the transformation of points into a potentially
high-dimensional space, followed by the evaluation of their inner products within the
Reproducing Kernel Hilbert Space (RKHS). To mitigate this, instead of using the implicit
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mapping provided by the kernel trick, we seek an explicit transformation of the data
into a low-dimensional Euclidean inner product space via a randomized feature map
z : Rd → RD. This approximation is given by:

K(u,v) = ⟨ϕ(u), ϕ(v)⟩ ≈ z(u)⊤z(v). (2.33)

RFFs are utilized to expedite kernel methods, as introduced by Rahimi and Recht
(2007) [158]. RFF projects data into a low-dimensional space, contrasting with kernel
methods that project data into a potentially high-dimensional space.

RFF are effective for positive definite kernels that are shift-invariant, also known as
stationary kernels, i.e., k(x,y) = k(x − y). Consider the inverse Fourier transform of
the kernel function k:

k(x− y) =
∫︂
Rd

k̂(w)ejw⊤(x−y) dw = Ew[ζw(x)ζw(y)∗] (2.34)

where k̂(w) is the Fourier transformed of k, with w the frequency and j the imaginary
unit, and we select ζw = ejw⊤x. Note that the Bochner’s theorem guarantees that its
Fourier transform is a proper probability distribution. Therefore, so ζw(x)ζw(y)∗ is an
unbiased estimate of k(x, y) when w is drawn from k̂.

Let us also note that the kernel function k and the transformed kernel k̂ are real-valued,
so the sine component of ejw⊤(x−y) can be ignored and replaced with cos(w⊤(x−y)).
Hence, ζw(x) = cos(w⊤x).

Here, for the sake of completeness of the presentation, we restate the following
theorem [158],

Theorem 2.4.1 (Low-distortion of nonlinear kernel-embedding [158]). LetK be a posi-
tive definite shift-invariant kernelK(u,v) = K(u−v). Consider the Fourier transform
pK,α = F̂ [K] of the kernelK, resulting a probability density function (pdf) pK,α in the
frequency space A: pK,α(α) = 1

2π

∫︁
ejα∆K(∆)d∆, and draw N i.i.d. samples weights

α1, . . . ,αN ∈ Rd from pK,α. Define

ϕN (u;α) ≡
√︃

1
N

[cos(αT
1 u), . . . , cos(αT

nu), sin(αT
1 u), . . . , sin(αT

nu)]. (2.35)

Then,∀ϵ > 0

P
[︃
(1− ϵ)K(u,v) ≤ ϕN (u)TϕN (v) ≤(1 + ϵ)K(u,v)

]︃
≥

≥ 1−O
(︃

exp
(︃
− Nϵ2

4(d+ 2)

)︃)︃
,

(2.36)

where P stands for the probability function.

An equivalent result can be obtained by employing only cosine as the activation
function and random biases in [0, 2π] [158]. More generally, there is no constraint in
considering trigonometric activation functions, as sigmoid and RBFs have equivalently
shown remarkable results [69, 95, 156, 94, 91, 181, 125]. Here we restate, the following
theorem [159, 160]:
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Theorem 2.4.2. (cf. Theorem 3.1 and 3.2 in [160]) Consider the parametric set activation
functions on X ⊆ Rd, ψ(x;α) : X × A → R parametrized by random variables α in
A, that satisfy supx,α |ϕ(x,α)| ≤ 1. Let p be a probability distribution on A and µ be
a probability measure on X and the corresponding norm ∥f∥L2(µ) =

∫︁
X
f(x)2µ(dx).

Define the set:

Gp ≡
{︃
g(x) =

∫︂
A

w(α)ϕ(x;α)dα : ∥g∥p(α) <∞
}︃
, ∥g∥p := sup

α∈A
∥w(α)/p(α)∥.

(2.37)
Fix a function g∗ in Gp. Then, for any δ > 0, there exist N ∈ N, and α1,α2, . . . ,αN

of α drawn i.i.d. from p, and a function ĝ in the random set of finite sums

Ĝα ≡
{︃
ĝ : ĝ(x) =

N∑︂
j=1

wjϕ(x;αj)
}︃

(2.38)

such that √︄∫︂
X

(g∗(x)− ĝ(x))2dµ(x) ≤ ||g
∗||p√
N

(︃
1 +

√︃
2 log 1

δ

)︃
, (2.39)

holds with probability at least 1− δ. Moreover, if ϕ(x;α) = φ(α ·x), for a L-Lipschitz
function ψ, the above approximation is uniform (i.e., in the supremum norm).

The above Theorem implies that the function class Gp can be approximated to any
accuracy when N → ∞. Moreover (see [160]) this class of functions is dense in
RKHS defined by ϕ and p. For a detailed discussion on the pros and cons of function
approximation with such random bases, see [203].

2.5 Random projections in Neural Networks
Let us examine a single-output, single-hidden-layer FNN, represented by a function
fN : Rd → R with a a priori fixed matrix of internal weightsA ∈ RN×d, whereN rows
are denoted by αj ∈ R1×d and biases β = (β1, . . . , βN ) ∈ RN :

fN (x;w, βo, A,β) =
N∑︂

j=1
wjψ(αj · x + βj) + βo =

N∑︂
j=1

wjψj(x) + βo (2.40)

Here, N represents the number of neurons (nodes), d is the dimension of the input
x ∈ Rd×1, βo is a constant offset (referred to as the output bias), and ψ : R→ R is the
activation (transfer) function. For fixed parameters αj and βj , we denote this as a fixed
basis function ψj . The weights w = (w1, . . . , wN )T ∈ RN×1 are the external (readout)
weights connecting the hidden layer to the output layer. In RPNNs, the only trainable
parameters of the network are w and the offset bias βo.

Activation functions, which are often inspired by the behavior of neuron spikes (e.g.,
sigmoid functions such as the logistic sigmoid and hyperbolic tangent), are critical in
determining the expressive capacity of ANNs. However, as shown by Mhaskar and
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Micchelli (1992) and Leshno et al. (1993) [174, 175], any non-polynomial function can
achieve universal approximation, moving beyond biological motivations. Consequently,
our focus in the subsequent theoretical sections will be on generic non-polynomial and
infinitely differentiable activation functions. To illustrate their practical capabilities, our
numerical experiments will employ the well-known logistic sigmoid function.

Furthermore, in the following sections, when no ambiguity arises, we will denote
RPNNs with N + 1 neurons, which depend solely on external weights w, using the
notation fN (·;w), thus omitting explicit references to the internal fixed parameters α
and β.

2.5.1 Linear independence of basis functions
In this section, we review the results presented in Ito (1996) [204] about the sufficient
conditions to obtain a set of linear independent basis functions.

In particular in this section, we will show that to have a system of independent
basis functions {ψ1, ψ2, . . . , ψN}, in a neural network is sufficient to consider slowly
increasing nonlinear plane waves, such that the support of their Fourier transform F [ψ]
has an open subset, as basis function and make any pair of internal weights and biases
(αj , βj) ̸= ±(αj′ , βj′), ∀j ̸= j′.

Note that, a plane wave function is a function ϕ : Rd → R that can be represented
as the composition of a univariate function with an affine transformation: ϕ(x) =
ψ(a · x + b), where ψ : R→ R is a univariate function, and a and b are vectors in Rd.

Remark 2.5.1. As we will discuss later, the condition (αj , βj) ̸= ±(αj′ , βj′), ∀j ̸= j′

outlined in [204], does not universally guarantee that the basis functions are independent,
as there exist certain counter-examples that can be identified [204]. However, such func-
tions typically exhibit discontinuities and irregular shapes, and have not been employed
in ANNs. In practical applications, widely used activation functions such as logistic sig-
moid, hyperbolic tangent, Gaussian RBF, and many others, with weights following the
aforementioned criterion, have been shown by the author to be effectively independent.
Therefore, we will proceed under the assumption that the condition in [204] is sufficient.

Let us observe first that distributions supported at the origin can only be expressed as
linear combinations of the Dirac delta function δ0 and its derivatives δ(k)

0 . In the Fourier
domain, the Fourier transform of δ0 is constant, whereas the Fourier transform of δ(k)

0 is
(iξ)k, corresponding to polynomials of degree k in ξ. Hence, the linear independence of
such distributions reduces to the linear independence of the corresponding polynomials
in the Fourier domain. Specifically, for a set of coefficients ak, if

n∑︂
k=0

akδ
(k)
0 = 0, (2.41)

then, in the Fourier domain, this becomes

n∑︂
k=0

ak(iξ)k = 0. (2.42)
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The linear independence of the polynomials (iξ)k ensures that all coefficients ak must
be zero. Thus, checking the linear independence of the distributions δ(k)

0 is equivalent to
verifying the linear independence of these polynomials.

Now, define the set

D0(Rd) = {φ ∈ D(Rd) | O /∈ supp(φ)}, (2.43)

where O denotes the origin.

Definition 2.5.1. Let Ti, i = 1, . . . , n, be distributions defined on Rd. If the equation

n∑︂
i=1

ai⟨Ti, φ⟩ = 0 for all φ ∈ D(Rd) (2.44)

implies that ai = 0, i = 1, . . . , n, then the distributions Ti are called strictly linearly
independent.

Strictly linearly independent distributions are also linearly independent. If the distri-
butions Ti are defined by

⟨Ti, φ⟩ =
∫︂
Rd

fiφdx, (2.45)

where the functions fi are locally integrable, then the two notions are equivalent. In
this case, the condition

n∑︂
i=1

ai⟨Ti, φ⟩ = 0 for all φ ∈ D0(Rd) (2.46)

is equivalent to

n∑︂
i=1

aifi(x) = 0 for almost all x ∈ Rd, (2.47)

which, in turn, is equivalent to⟨︄
n∑︂

i=1
aiTi, φ

⟩︄
= 0 for all φ ∈ D(Rd). (2.48)

Next, define a line Lw and a hyperplane Hw for a nonzero vector w as

Lw =
{︁
x ∈ Rd ; x = tw, −∞ < t <∞

}︁
, Hw =

{︁
x ∈ Rd ; w · x = 0

}︁
. (2.49)

Then, Rd = Lw⊕Hw. We say that vectors wi point in distinct directions if they are
nonzero and the lines Lwi

intersect only at the origin.
Now we can state the following theorem (proof available in [204]):
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Theorem 2.5.1. Let T0j , j = 1, . . . , n0, be linearly independent distributions on Rd

supported at the origin. Let wi ∈ Rd, i = 1, . . . , n, be vectors in distinct directions. For
each i, let Tij ∈ D′(Rd), j = 1, . . . , ni, be strictly linearly independent distributions
supported by Lwi

. Then, Tij , i = 0, . . . , n, j = 1, . . . , ni, are linearly independent.

Remark 2.5.2. Let wi ∈ Rd, i = 1, . . . , n, be vectors in distinct directions, and let
Ti ∈ D′(Rd), i = 1, . . . , n, be distributions with supp(Ti) ⊆ Lwi

. Suppose the support
of each Ti contains a point other than the origin. Then, the Ti are strictly linearly
independent.

The Fourier transform of elementary trigonometric functions sin(at) and cos(at)
yields a distribution whose support is at two distinct points.

The following remark generalizes the linear independence of differently scaled
trigonometric functions. Any number of strictly linearly independent distributions can
be generated by scaling a distribution with compact support that includes a point other
than the origin:

Remark 2.5.3. Let Ti ∈ D′(R), i = 1, . . . , n, be distributions such that the values of
inf supp(Ti) and sup supp(Ti), for i = 1, . . . , n, are distinct. Then, the Ti’s are linearly
independent. Moreover, at most one of these distributions can be supported at the origin.
The remaining Ti’s are strictly linearly independent.

Linear independent scaled and rotated plane waves

Tempered distributions Ti are linearly independent if and only if their Fourier transforms
FTi are linearly independent.

When we need to represent explicitly the space where a distribution T is defined,
we denote the variable as T (x). Let R(x) and T (y) be distributions defined on Rd

and Rd, respectively. Then, the tensor product R(x) ⊗ T (y) of the two distributions is
well-defined on the product space Rd × Rd = R2d. The Fourier transform of the tensor
product is the tensor product FR⊗FT of the Fourier transforms.

The plane wave g(w · x− t) can be regarded as a tensor product of a function on Lw

and a constant 1 on Hw.
For a slowly increasing function g on R, setG(x) = g(w ·x), wherew ∈ Rd, w ̸= 0.

Then, G is also a slowly increasing function on Rd. Hence, its Fourier transform is
well-defined.

For convenience, we introduce a dual notion of strict linear independence.

Definition 2.5.2. We call functions on Rd completely linearly independent if they are
slowly increasing and their Fourier transforms are strictly linearly independent.

We report a theorem by [204]:

Theorem 2.5.2. Let pi, i = 1, . . . , n0, be linearly independent polynomials on Rd, and
let gi, i = 1, . . . , n, and j = 1, . . . , ni, be slowly increasing functions on R. Suppose
that gi,j , j = 1, . . . , ni, are completely linearly independent for each i. Then, for any
vectors wi ∈ Rd, i = 1, . . . , n, in distinct directions, the polynomials pi and the plane
waves gi,j(wi · x) are linearly independent.
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Hence, it is evident that differently scaled and distinctly rotated trigonometric plane
waves are linearly independent.

A single distribution is strictly linearly independent if its support has a point other
than the origin. The inverse Fourier transform of such a distribution is not a polynomial.

Remark 2.5.4. Let pi, i = 1, . . . , n0, be linearly independent polynomials on Rd and let
gi, i = 1, . . . , n, be slowly increasing non-polynomial functions on R. Then, for vectors
wi ∈ Rd, i = 1, . . . , n, in distinct directions, the polynomials pi and the plane waves
gi(wi · x) are linearly independent.

Thus, by rotation, we can create infinitely many linearly independent plane waves.
One of the meanings of Theorem 2.5.2 can be expressed in the following corollary:

Corollary 2.5.1 (of Theorem 2.5.2). Let pi, i = 1, . . . , n0, be linearly independent
polynomials on Rd and let gi, i = 1, . . . , n, and j = 1, . . . , ni, be slowly increasing
non-polynomial functions on R such that their Fourier transforms Fgi,j are functions.
Furthermore, let gi,j , j = 1, . . . , ni, be linearly independent for each i. Then, for any
vectors wi ∈ Rd, i = 1, . . . , n, in distinct directions, the polynomials pi and the plane
waves gi,j(wi · x) are linearly independent.

In many cases of neural networks, activation functions are differentiable functions
and their derivatives are square integrable. Then, the Fourier transforms of the derivatives
are functions.

Uniformly scaled and variously shifted plane waves

In neural network theory, only a single type of activation function, say g, is often used.
Accordingly, we have a particular interest in the case where the plane waves are of the
form g(wi · x− ti). In this section, we treat the linear independence of polynomials and
plane waves uniformly scaled direction-wise.

Lemma 2.5.1. Letw be a nonzero vector inRd, let ti, i = 1, . . . , n, be distinct constants,
and let g be a slowly increasing function on R. If the support of Fg contains an open
subset, then the plane waves g(w · x− ti) are completely linearly independent, and their
Fourier transforms are strictly linearly independent.

Note that, by assumption, the function g in the lemma is non-polynomial.

Remark 2.5.5. The assumption that the support of Fg contains an open subset is
important. Although sin t is a slowly increasing non-polynomial function, sin t+sin(t+
π) = 0 on R. Hence, a sum of a plane wave defined by sin t and its shift can be zero in
Re. Note that the support of the Fourier transform of sin t is nowhere dense.

Theorem 2.5.3. Let Pi, i = 1, . . . , n0, be linearly independent polynomials on Rd, let
wi, i = 1, . . . , n, be vectors in Rd in distinct directions, and let g be a slowly increasing
non-polynomial function onR. Suppose that the support ofFg has an open subset. Then,
the polynomials Pi, i = 1, . . . , n0, and plane waves g(wi · x − tj), i = 1, . . . , n, j =
1, . . . , ni, are linearly independent if tj , j = 1, . . . , ni, are distinct constants for each i.
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Diversely scaled plane waves

In this section, we treat the case where plane waves in the same direction are scaled
diversely. Differently scaled shifts of a plane wave are not necessarily linearly in-
dependent. An example is the case of plane waves created from a ramp function
r(t) = max(0,min(t, 1)):

2r
(︃
t

2

)︃
− r(t)− r(t− 1) = 0. (2.50)

However, in the general case where plane waves can be both scaled and shifted, a
general condition ensuring that the constructed plane waves are linearly independent has
not yet been established. Nevertheless, this has been investigated for a specific class of
functions. Here, we briefly present such cases, classifying activation functions into three
groups: (1) those which converge (or diverge) more rapidly than exponential functions,
(2) those which converge (or diverge) in exponential order, and (3) those which converge
(or diverge) in polynomial order.

The theorem and remark below, demonstrate linear independence of normal, cu-
mulated normal, arctangent, symmetric exponential, hyperbolic tangent, and logistic
sigmoid activation functions, and so on (see [204]). A plane wave and its reversion
created from one of these (and a constant) are not linearly independent because they are
symmetric (g(−t) = g(t) or g(−t) = −g(t)). Ignoring such trivial linear dependence,
we intend to prove that if (wi, ti) ̸= (wj , tj) for i ̸= j, then g(wix − ti)’s and linearly
independent polynomials are linearly independent for the respective activation functions.

However, by Corollary 2.5.1, they are linearly independent ifFg is a function. Hence,
it is sufficient to prove that the g(cit− tj)’s are linearly independent if (ci, ti) ̸= (cj , tj)
for i ̸= j.

Note that we may ignore the case ci = 0 because g(cit− tj) is a constant.
Let us denote by aij the constants for which holds:

m∑︂
i=1

n∑︂
j=1

aijg(cit− tj) = 0. (2.51)

Our purpose is, of course, to prove that aij = 0 for all i and j. Let us define gij =
g(cit− tj) and hij = h(cit− tj).
Remark 2.5.6. When the activation function is differentiable, Eq. (2.51) implies that

m∑︂
i=1

n∑︂
j=1

aijg
′(cit− tj) = 0. (2.52)

Here, recall that ci ̸= 0 for all i. If Eq. (2.52) implies that aij = 0 for all i and j, it also
implies a0 = 0 for all i and j. Hence, linear independence of g′(cit− tj)’s implies that
g(cit− tj)’s are linearly independent.

Let gk, k = 1, . . . , n, be nonzero functions on R. Suppose that, for any k < n,⃓⃓⃓⃓
gk+1(t)
gk(t)

⃓⃓⃓⃓
converges to 0 as t→∞ (t→ −ck) . (2.53)
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Then the gk are linearly independent. In fact, let
∑︁n

i=1 akgk(t) = 0. Then,

lim
t→∞

akgk(t)
g1(t) = a1 = 0. (2.54)

Repeating this, we obtain that a1 = a2 = · · · = an = 0. The condition on gk and gk+1
in this remark defines an order. If a set of functions can be ordered in this sense, the
functions are linearly independent.

Examples of functions that can be proven independent, by the above arguments,
are the Gaussian RBF, g(t) = exp(−t2/2), and its cumulative integral, the hyperbolic
tangent and the logistic sigmoid.

2.5.2 Utilizing RPNNs for Function Approximation
When approximating a sufficiently smooth function f : Ω ⊆ Rd → R, for which we
can evaluate n+ 1 points of its graph (x0, y0), (x1, y1), (x2, y2), . . . , (xn, yn) such that
yi = f(xi), the training of an RPNN reduce to the solution of a linear interpolation
system of n+ 1 algebraic equation with N + 1 unknowns w̃ = (βo,w):

Rw̃ = R̃w + βo = y, Rij = ψj(xi) (2.55)

where y = (y0, y1, . . . , yn) is the vector containing the desired outputs, and the random
collocation matrix R has elements Rij .

Let us state the following theorem here:

Theorem 2.5.4 (Exact interpolation of RPNNs). Given an RPNN withN hidden neurons
as in Eq. (2.40) with an infinitely differentiable, non-polynomial and slowly-increasing
activation function ψ : R → R, such that the support of its Fourier transform is an
open subset. Let internal weights A and biases β be randomly chosen according to
any continuous probability distribution. Then, for N + 1 arbitrary input-output samples
(xi, yi), with distinct inputs xi ̸= xi′ , ∀i ̸= i′, there exist a unique choice of external
weights w and offset βo that ensure with probability 1:

P(|fN (xi;w, βo, A,β)− yi| = 0) = 1, ∀i = 1, . . . , n+ 1 (2.56)

Proof. We will prove that, the matrix R in Eq. (2.55) is invertible with probability 1.
Consider the j-th column vector

v(βj) = [ψj(x0), . . . , ψj(xN )]T = [ψ(αjx1 + βj), . . . , ψ(αjxN + βj)]T (2.57)

of a matrix R in Euclidean space RN , where βj ∈ (βmin, βmax) ⊂ R is the corre-
sponding internal bias. We want to establish that the vector v does not belong to any
subspace with dimension less than N + 1. Since xk ̸= xk′ are distinct, and since the
weights A are drawn from a continuous probability distribution, we can assume with
probability 1 that also αjxk ̸= αjxk′ , for all k ̸= k′. Also, we get with probability
1 that (αj , βj) ̸= ±(αj′ , βj′), thus satisfying the condition of Ito [204] to obtain a
system of independent (plane wave) basis functions. If by contradiction, we assume that
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v belongs to a subspace of dimension N (less than N + 1). Then, there exists a vector
u = (u0, u1, . . . , uN ) ̸= 0 which is orthogonal to this subspace and such that:

u·(v(βj)−v(βmin)) = u0ψ(βj +z0)+. . .+uNψ(βj +zN )−u·v(βmin) = 0, (2.58)

where zk = αjxk for k = 0, . . . , N , for all βj ∈ (βmin, βmax). Assuming, without loss
of generality, uN ̸= 0, the above equation can be further expressed as:

ψ(βj + zN ) =
N−1∑︂
l=0

γlψ(βj + zl) + u · v(βmin)
uN

, (2.59)

where γl = ul

uN
for l = 0, . . . , N − 1. Utilizing the fact that ψ is infinitely differentiable

and a non-polynomial, we have:

ψ(m)(βj + zN ) =
N−1∑︂
l=0

γlψ
(m)(βj + zl), m = 1, 2, . . . , N,N + 1, . . . (2.60)

However, there are only N free coefficients γ0, γ1, . . . , γN−1, for the resulting (more
than) N + 1 linear equations in Eq. (2.60). Indeed, we can note that the matrix W with
entries Wm,l = ψ(m)(βj + zl) is a Wronskian matrix. Since we have a basis of linear
independent functions with probability 1, the Wronskian matrix of size N + 1×N + 1
is invertible. But Eq. (2.60) implies that only N columns are independent. This
contradiction implies that the vector v does not belong to any subspace with a dimension
less than N + 1.

However, even if the matrix R in Eq. (2.55) is invertible under the condition of
Theorem 2.5.4, for many random choices of internal weights α,β and collocation points
x, in practice the random collocation matrix R numerically tends to be ill-conditioned
and close to singular. Therefore, in practice, it is often suggested to solve Eq. (2.55)
via a Moore-Penrose pseudo-inverse, that can be computed by a truncated SVD (tSVD).
This involves computing the SVD and the regularized pseudo-inverse R†, as follows:

R = UΣV T = [Uq Ũ ]
[︃
Σq 0
0 Σ̃

]︃
[Vq Ṽ ]T , R† = VqΣ−1

q UT
q , (2.61)

where the matrices U = [Uq Ũ ] ∈ Rn+1×n+1 and V = [V q Ṽ ] ∈ RN+1×n+1 are
orthogonal and Σ ∈ Rn+1×N+1 is a diagonal matrix containing the singular values
σi = Σ(i,i). Here, we select the q largest singular values exceeding a specified tolerance
0 < ϵ ≪ 1, i.e., σ1, . . . , σq > ϵ, effectively filtering out insignificant contributions and
improving numerical stability. Note that the solution of Eq. (2.55) with the Moore-
Penrose pseudo-inverse correspond to the solution of the following regularized least-
squares problem in L2:

arg min
w̃∈RN+1

∥Rw̃ − y∥2
2 + ϵ∥w̃∥2

2. (2.62)
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On the other hand, the Tikhonov regularization approach offers an alternative way
to deal with the ill-conditioning of R by minimizing a similar regularized least-squares
problem

wk = arg minwk

{︁
∥wkΨ− Yk∥2

2 + λ∥wkL∥2
2
}︁
, (2.63)

where Yk is the vector of dimension m, containing the values (samples) of fk at m sam-
pling points xi, λ > 0 is the regularization parameter, andL ∈ RN×N is a regularization
operator, often taken as the identity matrix I . The Tikhonov regularized solution can be
expressed as:

wk = YkΨT (ΨΨT + λLLT )−1. (2.64)

By setting L = I and substituting the tSVD of Ψ, this solution can be further simplified
as follows [205, 157]:

wk =
r∑︂

i=1

σi
2

σi
2 + λ2

ui
TYk

σi
vi, (2.65)

where r is the rank of Ψ, σi are the singular values of Ψ, and ui, vi are the corresponding
left and right singular vectors. This formulation highlights the impact of the regularization
parameter λ on the filtered contributions from each singular component.

Alternatively, a more robust approach that further enhances numerical stability, in-
volves utilizing a rank-revealing QR decomposition with column-pivoting:

RP = [Q1 Q2]
[︃
T
0

]︃
, (2.66)

where the matrix Q = [Q1 Q2] ∈ Rn+1×n+1 is orthogonal, T ∈ RN+1×N+1 is
an upper triangular square matrix and the matrix P ∈ Rn+1×n+1 is an orthogonal
permutation of the columns. The key advantage of the column permutations lies in its
ability to automatically identify and discard small values that contribute to instability.
Indeed, in case of ill-conditioned (rank-deficient) system we have that effectively the
column of the matrix Q do not span the same space as the column of the matrix R. As a
result, the matrix T is not full upper triangular, but we have:

R = [Q1 Q2]
[︃
T11 T12
0 0

]︃
PT , (2.67)

where, if rank(R) = r < N + 1, the matrix T11 ∈ Rr×r is effectively upper triangular
and T12 ∈ Rr×(N+1−r) are the remaining columns. Note that numerically, one selects a
tolerance 0 < ϵ << 1 to estimate the rank r of the matrix R and set values of T below
the threshold to zero. Hence, based on (2.67), we can solve Rw̃ = y, by first setting
PT w̃ = [z1 z2]T and solve for z1 ∈ Rr the following system:

T11z1 = QT
1 y − T12z2. (2.68)

Note that casting the back-substitution algorithm for the matrix T11 in Eq. (2.68), we
can efficiently solve the system. In order to also obtain the minimum-norm solution, one
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can additionally cast the COD [161], by also computing the QR decomposition of the
transposed non-zero elements in T :[︃

TT
11
TT

22

]︃
= V

[︄
T̃

T

11
0

]︄
. (2.69)

Finally, by setting S = PV , one obtains:

R = [Q1 Q2]
[︃
T̃ 11 0
0 0

]︃
(S)T , (2.70)

where T̃ 11 is a lower triangular matrix of size r × r. Finally, the least-square minimum
norm solution, as in Eq. (2.62). is given by:

w̃ = S · (T̃−1
11 (QT

1 y)) (2.71)

where the inversion of T̃ 11 is computed casting the forward substitution algorithm that
is numerically stable.

2.6 Best Approximation with RPNNs
Let us consider the case in which the input is one-dimensional x ∈ [a, b] ⊂ R. The Eq.
(2.40) can be restated as:

fN (x;w, βo,α,β) =
N∑︂

j=1
wjψ(αj · x+ βj) + βo =

N∑︂
j=1

wjψj(x) + βo, (2.72)

where now we represent the internal weights by the column vector α = (α1, . . . , αN ) ∈
RN×1. Here, we define the concept of RPNN as the best approximation and provide
proof about its existence and uniqueness. Let us first trivially note that if we consider an
RPNN with independent fixed basis function, we have a linear space:

Theorem 2.6.1. Letψ be a slowly increasing (or infinitely differentiable) activation func-
tion. The set M[a,b]

(N,α,β) = {fN ∈ C[a, b] : fN (x;w, βo,α,β) =
∑︁N

j=1 wjψ(αjx +
βj) + βo, with (αj , βj) ̸= ±(αj′ , βj′) and w ∈ RN} of RPNN is a vector space of
dimension N + 1 on R with usual vector sum and scalar vector product.

Proof. For (αj , βj) ̸= ±(αi, βi) the set of basis functions is independent for [204].
Then clearly fN ( · ; w̃) ≡ 0, with w̃ = (βo,w) = 0, is in M[a,b]

(N,α,β) and since if
we have fN ( · ;w1, β

o
1), fN ( · ;w2, β

o
2) ∈ M[a,b]

(N,α,β), based on (2.72), also we obtain
fN ( · ; γ1w1 + γ2w2, γ1β

o
1 + γ2β

o
2) ∈ M[a,b]

(N,α,β), ∀γ1, γ2. Finally, trivially, there exist
an isomorphism between the set of external weights w̃ and the usual vector space on
RN+1.
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Let’s also observe that the differentiability of the function ofM[a,b]
(N,α,β), depends on

the differentiability of the activation functions. Thus:

Lemma 2.6.1. If the activation functionψ ∈ Cν(R), then the spaceM[a,b]
(N,α,β) is a vector

subspace of Cν([a, b]).

Now, we proceed by considering a norm, such as the Lp-norm with p = 1, 2,∞,
denoted also as ∥ · ∥∞, ∥ · ∥2, or ∥ · ∥1. SinceC[a, b] equipped with Lp norms is a Banach
space, it follows thatM[a,b]

!(N,α,β) is also a Banach space.

Definition 2.6.1. We define the RPNN of the best approximation in normLp overMα,β

as the RPNN which solve

∥f − fN∥p = min
gN ∈M[a,b]

(N,α,β)

∥f − gN∥p. (2.73)

2.6.1 Existence

Since, M[a,b]
(N,α,β) ⊂ C([a, b]) is a finite dimensional Banach space, and the function

∥f −·∥p is continuous, for the Stone–Weierstrass approximation theorem, there exists an
ANN fN as defined above of the best Lp approximation inM[a,b]

(N,α,β). Indeed, the zero
function, described by the vector of parameters 0, is inM[a,b]

(N,α,β), which approximate
f with error ∥f∥p. So the best approximation should be in the closed ball of function
gN ∈ M[a,b]

(N,α,β) such that ∥f − gN∥p ≤ ∥f∥p, which is closed and limited, so it is a
compact set. Therefore, a global minimum inM[a,b]

(N,α,β) exists.

2.6.2 Uniqueness

We have shown thatM[a,b]
(N,α,β) forms a vectors space, implying it is also a convex set.

For illustration, consider two vectors of weights w̃0 = (βo
0 ,w0) and w̃1 = (βo

1 ,w1) and
a point w̃γ on the segment, i.e.:

w̃γ = γw̃1 + (1− γ)w̃0, γ ∈ [0, 1]. (2.74)

The vector w̃γ still represents the external weights of an RPNN fN ( · ; w̃γ) inM[a,b]
(N,α,β).

Hence, we can say that, there exists either a unique best Lp approximation within the
space M[a,b]

(N,α,β) or infinitely many equally good approximations, all corresponding to
the points along the segment. Let’s assume w̃0 and w̃1 are two solutions of best Lp

approximation of a function f , thus ∥f − fN ( · ; w̃0)∥p = ∥f − fN ( · ; w̃1)∥p = r. Then
for w̃γ as in Eq. (2.74):

∥f − fN (w̃γ)∥p = ∥γ(f − fN ( · ; w̃1)) + (1− γ)(f − fN ( · ; w̃0))∥p ≤
≤ γ∥f − fN ( · ; w̃1)∥p + (1− γ)∥f − fN ( · ; w̃0)∥p = γr + (1− γ)r = r

(2.75)
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Hence, to maintain consistency with the best approximations defined by w̃0 and w̃1, we
require necessarily the equality ∥f − fN ( · ; w̃γ)∥p = r to hold ∀γ ∈ [0, 1]. This implies
that all w̃γ define alternative RPNNs with the same maximum error as the original best
approximations. If we consider Lp norms, with 1 < p < ∞, the space is also strictly
convex1, which imply that necessarily w̃1 = w̃2. Otherwise, if they are distinct then, by
strict convexity:

∥f − fN ( · ; w̃0) + f − fN ( · ; w̃1)∥p < 2r (2.76)
or, equivalently, ⃦⃦

f − fN ( · ; w̃0) + fN ( · ; w̃1)
2

⃦⃦
p
< r (2.77)

thus we obtain a better approximation with w̃γ = w̃1/2

∥f − fN ( · ; w̃1/2)∥p < r, (2.78)

that is a contradiction. Therefore, we can state the following theorem.

Theorem 2.6.2. The best Lp approximation problem with RPNNs in Eq. (2.73) has a
unique solution in the spaceM[a,b]

(N,α,β) when 1 < p <∞.

2.7 Convergence of the RPNN of the best approximation
In this section, we will prove that by considering activation functions that are infinitely
differentiable, then the RPNNs of the best Lp approximation can exhibit exponential
convergence towards approximating an infinitely differentiable function. Let us assume
we want to approximate the function f : R→ R. Then we state the following theorem:

Theorem 2.7.1. The RPNN of the best Lp approximation inM[a,b]
(N,α,β) equipped with an

infinitely differentiable non-polynomial activation function converge exponentially fast
when approximating an infinitely differentiable function f : R→ R.

Our goal is to demonstrate the existence of a choice of external weights and biases that
exponentially enhance the convergence rate of an RPNN approximation. Subsequently,
the unique RPNN configured for the best approximation is guaranteed to converge at
least as rapidly. Specifically, we establish the following Lemma:

Lemma 2.7.1. There exist a choice of weights w̃ = (βo,w) that makes an RPNN in
M[a,b]

(N,α,β) with infinitely differentiable non-polynomial activation functions, converging
exponentially fast in Lp when approximating an infinitely differentiable function f :
R→ R.

Proof. Let’s call Pn the polynomial of best Lp approximation of degree n of f in the
interval [−1, 1] w.r.t. the norm ∥ · ∥p with 1 < p <∞:

f(x) ≃ Pn(x) =
n∑︂

k=0
akx

k. (2.79)

1A normed linear space (X, ∥ · ∥) is called strictly convex if for u, v ∈ X , ∥u∥ ≤ r∥ and ∥v∥ ≤ r,
∥u + v∥ < 2r unless u = v.

51



2.7. Convergence of the RPNN of the best approximation

Let’s call fN ( · ; w̃) ∈M[a,b]
(N,α,β) a RPNN approximation of f that we are seeking.

f(x) ≃ fN (x; w̃) =
n∑︂

j=1
wjψ(αj · x+ βj) + βo, (2.80)

whereψ is the activation function, which is a non-polynomial and infinitely differentiable.
Let us also define cj the centers of the wave plane activation function such that cj = − βj

αj

(see, e.g., [69]), or equivalently, βj = −αj · cj :

f(x) ≃ fN (x; w̃) =
N∑︂

j=1
wjψ(αj · (x− cj)) + βo. (2.81)

Let us consider also the best Lp approximation polynomial Qn of degree n of the
activation function ψ, in the interval Iα,β = [min(αj · x+ βj),max(αj · x+ βj)]:

ψ(x) ≃ Qn(x) =
n∑︂

k=0
bkx

k. (2.82)

Note that since ψ is a non-polynomial function, it cannot be exactly (with zero residual)
represented by any polynomial Qn of finite degree. Therefore, in what follows we can
consider arbitrary large n, and a corresponding non-zero coefficient bn. Also note that
the interval Iα,β is considered, to maintain accurate approximation of ψj by using the
transformed polynomial Qn(αjx+ βj).

We can then approximate the neural network fN with the polynomial GN,n, given by:

fN (x;w) ≃ GN,n(x) =
N∑︂

j=1
wj

n∑︂
k=0

bkα
k
j (x− cj)k + βo. (2.83)

We can rewrite the polynomial GN,n using Newton’s binomial expansion:

GN,n(x) =
N∑︂

j=1
wj

n∑︂
k=0

bkα
k
j

k∑︂
s=0

(︃
k

s

)︃
(−cj)n−sxs + βo. (2.84)

At this point, we want to prove that we can find a vector of coefficient w̃ such that we
can have GN,n = Pn, thus we have to equate the coefficients of order k in Eq. (2.84) and
(2.79), thus resulting in a system of n equations in N unknowns:

ak =
N∑︂

j=1
wj(−cj)n−k

n∑︂
s=k

(︃
s

k

)︃
bsα

s
j , k = 1, . . . , n, (2.85)

while trivially equate the two offsets βo = a0. Eq. (2.85) can be written in matrix form
as

a = w ·M, (2.86)
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where a is the vector containing the coefficient ak and M is the matrix with elements
Mk,j that reads:

Mk,j = (−cj)n−k
n∑︂

s=k

(︃
s

k

)︃
bsα

s
j . (2.87)

If we takeN = n and we prove that the matrixM in Eq. (2.87) is invertible, with inverse
M−1, then there exist a unique choice of weights w = a ·M−1 that make GN,N = PN .
Note that, as proved in [204], the slowly increasing activation functions are independent
if (αj , βj) ̸= ±(αj′ , βj′). Thus, we may allow both αj and cj to be different for j ̸= j′.
Let us consider a fixed index k = 1, . . . , N in Eq. (2.87), then we have a polynomial in
the two variables α, c of type:

Mk,j = τNc
N−k
j αk

j + τN−1c
N−k
j αk+1

j ...+ τN−kc
N−k
j αN

j , (2.88)

where the τs are the coefficients in Eq. (2.87). Different index k′ ̸= k corresponds to
polynomials of different order, which, as can be noted, do not have any monomials in
common. Indeed cN−k

j ̸= cN−k′

j , thus they are a set of independent polynomials. It
follows that the rows of M are independent and therefore, M in Eq. (2.87) is invertible.

Finally, when approximating f with an RPNN fN ( · ; w̃), where the weights w̃ make
fN coincide with the polynomial GN,N constructed as above, we can prove that fN ( · ; w̃)
exponentially convergence to f , since:

∥f − fN∥p = ∥f − PN + PN − GN,N + GN,N − fN∥p ≤
≤ ∥f − PN∥p + ∥PN − GN,N∥p + ∥GN,N − fN∥p.

(2.89)

But sincePN is the best approximation polynomial, then ∥f−PN∥p converges exponen-
tially, as well as ∥GN,N − fN∥p converges exponentially because we have used the best
approximation polynomialQN of the activation functionψ. Finally ∥PN−GN,N∥p = 0,
because of the invertibility of the matrix M in (2.87).

Please note that the above constructive proof has shown that one has to invert a matrix
M in Eq. (2.87) which shares some similarities with the Vandermonde matrix, especially
asN becomes large or as the degrees of the polynomials increase, therefore it may be an
ill-conditioned matrix.

In order to evaluate the upper bound of the convergence, as we have determined in
Eq. (2.89), let us restate a classical result about the upper bounds of convergence of
Legendre polynomials (see Chapter 2 in Gaier (1987) [206]).

Theorem 2.7.2. Let a function f analytic in [−1, 1], that is analytically continuable to
the open Bernstein Ellipse Eρ, with 1 ≤ ρ ≤ ∞, in the complex plane, given by:

Eρ :=
{︃
z ∈ C

⃓⃓⃓⃓
z = u+ u−1

2 , u = ρeiθ, 0 ≤ θ ≤ 2π
}︃

(2.90)

and let PN be the Legendre interpolants to f in Legendre grid of N + 1 points xN ∈
[−1, 1]. Then the error satisfies:

lim
N→∞

∥f − PN∥p = O(ρ−N ). (2.91)
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A polynomial interpolant satisfying Eq. (2.91) is said to be maximally convergent.
Other examples of such polynomials are interpolants in Chebyshev, or Gauss-Jacobi
grids. The effective convergence rates of these polynomials may differ because of some
algebraic factors. In particular. the value of ρ depends on the smoothness of the function
f and on the domain interval [a, b], that need to be rescaled to [−1, 1], by considering
the Bernstein Ellipse Eρ associated with f̃(x) = f

(︁ 2x−a−b
b−a

)︁
: [−1, 1]→ R.

Now, we can note that in Eq. (2.89), ∥f − PN∥p in the interval [a, b] converges
as O(ρ(f, [a, b])−N ), where ρ(f, [a, b]) > 1 is the constant associate to the maximum
Bernstein ellipse Eρ in which f̃ is analytically continuable. While the convergence of
∥GN,N − fN∥p is given by N times the convergence of ∥QN −ψ∥, thus ∥GN,N − fN∥p

is of order O(N · ρ(ψ, Iα,β)−N ).
Finally, we emphasize that since the Theorem 2.7.1 hinges on the ability of RPNNs

to accurately reproduce polynomials, as described in the upper bound in Eq. (2.89) when
approximating less smooth functions, with a maximum order of differentiability ν ≥ 0,
this sets a limit to the achievable convergence rate, reducing it to O(N−ν).

2.8 On the selection of weights, biases, and hyperparame-
ters

In this section, we look into the a priori selection of the values of the internal weights and
biases for the RPNN approximator. Despite the theoretical assurance that any random
parameter selection should lead to exponential convergence, as proven in Theorem 2.7.1,
practical considerations necessitate a judicious choice to mitigate the ill-conditioning of
the matrix R in Eq. (2.55).

Moving beyond a naive random generation [198] of internal parameter, we therefore
explore three alternative strategies for selection, namely:

• Parsimonious Function-Agnostic Selection: Parameters dependent solely on the
domain of data of the sought function.

• Function-Informed Selection: Addressing the specific shape of the function in
consideration.

• Geometric random sampling: Addressing the case of high-dimensional inputs.

Note that other alternative approaches have also been investigated by other authors (see,
e.g., [94, 181]).
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2.8.1 Naive random generation
In a naive random generation approach for internal parameters and biases of an RPNN
[198], a common practice involves the normalization of input x ∈ [a, b] and output data
y ∈ [c, d] within the domain [−1, 1]. Thus, employing these transformations x→ x̃ and
y → ỹ:

x̃ = 2x− a− b
b− a

∈ [−1, 1], ỹ = 2y − c− d
d− c

∈ [−1, 1]. (2.92)

Subsequently, weights α = (α1, . . . , αN ) are uniformly and randomly selected from
the range [−1, 1], and biases β = (β1, . . . , βN ) are similarly chosen within the domain
[−1, 1]. Despite its simplicity, this method has proven effective in certain scenarios,
making it a straightforward yet powerful approach for initializing RPNNs [198]. However,
as numerical results will demonstrate, this choice deviates considerably from optimal
configurations.

2.8.2 Parsimonious function-agnostic selection
As proposed in previous works [95, 69], a fundamental strategy for obtaining effective
basis functions involves ensuring that the activation functions ψj have centers cj =
−βj/αj (as defined in Eq. (2.81)) within the domain [a, b] of interest. This choice
depends on both the activation function and the specific problem at hand. The ideal
bounds of the distribution can vary slightly, whether it’s a simple regression task, a
problem involving spatial derivatives, or a time-evolving phenomenon with potentially
hidden and challenging-to-determine stability conditions.

Here, for simplicity, we focus on common sigmoid-like functions, such as the logistic
sigmoid, given by:

ψj(x) ≡ σj(x) = 1
1 + exp(−αj · x− βj) . (2.93)

For this function, it is straightforward to compute the derivatives. In particular, the
derivatives with respect to the k-th component of x, xk are given:

∂

∂xk
σj(x) = αj,k

exp(zj)
(1 + exp(zj))2 ,

∂2

∂x2
k

σj(x) = α2
j,k

exp(zj) · (exp(zj)− 1)
(1 + exp(zj))3 ,

(2.94)

where zj = αj · x + βj .
A crucial point in the RPNN framework is how to fix the values of the internal weights

and biases in a proper way. Indeed, despite the fact that theoretically any random choice
should be good enough, in practice, it is convenient to define an appropriate range of
values for the parameters αj,k and βj that are strictly related to the selected activation
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function. For the one-dimensional case (d = 1), the logistic sigmoid σj is a monotonic
function such that:

αj,1 > 0⇒ lim
x→+∞

σj(x) = 1, lim
x→−∞

σj(x) = 0

αj,1 < 0⇒ lim
x→+∞

σj(x) = 0, lim
x→−∞

σj(x) = 1.

This function has an inflection point, that we call center cj defined by the following
property:

σj(αj,1cj + βj) = 1
2 . (2.95)

Now since σ(0) = 1/2, the following relation between parameters holds:

cj = − βj

αj,1
.

Finally, σj has a steep transition that is governed by the amplitude of αj,1: if |αj,1| →
+∞, then σj approximates the Heaviside function, while if |αj,1| → 0, then σj becomes
a constant function. Now, since in the RPNN framework, these parameters are fixed a
priori, what one needs to avoid is to have some function that can be “useless" in the
domain, say I = [a, b].
Therefore, for the one-dimensional case, our suggestion is to chose αj,1 uniformly
distributed as:

αj,1 ∼ U
(︃
−N − 55

10|I| ,
N + 35
10|I|

)︃
, (2.96)

where N is the number of neurons in the hidden layer and |I| = b − a is the domain
length. Moreover, we also suggest avoiding too small in module coefficients aj by setting:

|αj,1| >
1

2|I| .

Then, for the centers cj , we select equally-spaced points in the domain I , that are given
by imposing the βjs to be:

βj = −αj,1 · cj .

In the two-dimensional case (d = 2), we denote as x = (x, y)T ∈ R2 the input and
A ∈ RN×2 the matrix with rows αj = (αj,1, αj,2). Then, the condition (2.95) becomes:

σj(x, y) = σ(αj,1x+ αj,2y + βj) = 1
2 .

So, now we have:
s ≡ y = −αj,1

αj,2
x− βj

αj,2
,

where s is a straight line of inflection points that we call central direction. As the
direction parallel to the central direction σj is constant, while the orthogonal direction
to s, the sigmoid σj is exactly the one-dimensional logistic sigmoid. So considering
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one point cj = (cj,1, cj,2) of the straight line s, we get the following relation between
parameters:

βj = −αj,1 · cj,1 − αj,2 · cj,2.

Note that, the bias parameter βj influences the position of the center cj of the activation
function. One can either decide these centers beforehand (e.g., equally spaced) or
randomly sample them within the domain of interest and subsequently determine the
corresponding bias values using the following relation βj = − cj

αj
.

Note that the above bounds have been optimized heuristically for application on
the solution of stationary nonlinear PDEs. In other works, such as [156], where we
investigate simple regression task in one dimension, we choose α to be a vector of i.i.d
random uniformly distributed values in a range that depends on the number of neurons
N ; if the domain of interest is [a, b], we propose to set:

αj ∼ U
[︃
− (400 + 9N)

10(b− a) ,
(400 + 9N)
10(b− a)

]︃
, j = 1, . . . , N (2.97)

where U denotes the uniform distribution.
Now, the difference with the one-dimensional case is the fact that in a domain

I2 = [a, b]2 discretized by a grid of n × n points, the number of neurons N = n2

grows quadratically, while the distance between two adjacent points decreases linearly,
i.e., is given by |I|/(n− 1). Thus, for the two-dimensional case, we take αj,k uniformly
distributed as:

αj,k ∼ U
(︃
−
√
N − 60
20|I| ,

√
N + 40
20|I|

)︃
, k = 1, 2 (2.98)

where N is the number of neuron in the network and |I| = b− a. Such above selection
will be used later in 2d Nonlinear PDE solution.

It is worth to note that this function-agnostic approach is especially effective for
physics-informed problems, i.e., the solution of nonlinear PDEs, where the desired
output is not directly available. Indeed, the solution needs to be derived solely from
physical laws. This approach offers greater flexibility and adaptability, making it well-
suited for diverse applications, such as resolving sharp gradients in the time evolution
of PDEs or computing bifurcation diagrams [69, 95]. This is also particularly beneficial
when varying underlying parameters, which may result in abrupt changes in the solution
[69, 95].

2.8.3 Function-informed selection
In contrast to the just described function-agnostic selection, here we propose a function-
informed selection for internal parameters and biases of an RPNN, that involves a more
systematic approach. Here, we employ equally spaced centers in the input domain
and leverage a centered FD scheme to efficiently compute the first derivative of the
input function. Utilizing this derivative information, we try to set accordingly the αj

parameters for each neuron. This method ensures a more tailored initialization based on
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the specific characteristics of the input function. Here below, an example for the specific
case of a logistic sigmoid in Eq. (2.93), which have analytical first derivative:

dψj(x)
dx

= αj exp(αjx+ βj)
(1 + exp(αjx+ βj)2 =

αj exp
(︁
αj(x− cj)

)︁(︁
1 + exp(αj(x− cj)

)︁2 , (2.99)

where cj are the centers defined as cj = −αjβj . First (i) as for the vanilla generation, we
normalize the input and the output data as in Eq. (2.92). Hence, we consider the rescaled
function f̃ . Then we set the centers c̃j equally spaced in [−1, 1]. Then, (ii) we compute
the approximated derivatives of f̃ ′ of the function f̃ at the centers c̃j with a centered FD
scheme. By observing that the derivative of the logistic sigmoid in Eq. (2.99) evaluated
at the center c̃j = −βj/αj is:

dψj(cj)
dx

= αj

4 , (2.100)

Finally, (iii) we locally assume that:

dψj(cj)
dx

= f̃
′(cj). (2.101)

The above assumption is not generally correct as the contribution for the derivative of
the RPNN fN (·,w) is not only given by the single activation function ψj , but is also
influenced by the corresponding weight wj and possibly by all the other activations
functions. However, in the case of a sharp gradient, a sharp sigmoid is suitable and
the main variation (the highest derivative value) is localized at cj , while far from cj the
sigmoid becomes rather constant. Therefore, we set ultimately and heuristically:

αj = γ
f(cj+1)− f(cj−1)

∆x + εj , (2.102)

where ∆x is the distance between two consecutive centers, the proportionality constant
is set γ = 3/2 and εj is a random variable uniformly distributed, accounting for the
inexactness of the assumption in (2.101), as:

εj ∼ U
[︃
− (400 + 9N)

100(b− a) ), (400 + 9N)
100(b− a)

]︃
, j = 1, . . . , N. (2.103)

This function-informed approach demonstrates greater efficiency over the function-
agnostic method specifically for regression tasks, as it adapts the basis functions to the
known output [156]. However, further research is required to effectively integrate basis
function adaptation with physics-informed problem-solving using RPNNs. Currently,
the function-agnostic approach is simpler, more versatile, and generally requires less
optimization, potentially leading to lower computational costs.
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2.8.4 Geometric Random Sampling Procedure for high-dimensional in-
put

For the construction of an appropriate set of random basis functions when dealing with
high-dimensional inputs, e.g., for the solution of the inverse problem (i.e., that of learning
the effective PDEs from data) with multiple features, we suggest a different random
sampling procedure [45], than the one usually implemented in RPNNs and in particular
in Extreme Learning Machines [69, 91, 94] for the solution of the forward problem,
i.e., that of the numerical solution of PDEs. Indeed, the above-mentioned scheme of
sampling, using mesh of centers are prone to the “curse of dimensionality" in generating
grid, and it may be already infeasible when the dimension is greater than 3. Since in
the inverse problem, we aim at solving a high-dimensional over-determined system, it is
important to parsimoniously select the underlying basis functions ψ(i)

j , i.e., to seek for
appropriate internal weights W (i) and biases b(i) that lead to non-trivial functions.

In general, the weights w(i)
j and biases b(i)

j are uniformly random sampled from a
subset of the input/feature space, e.g.,w(i)

j , b
(i)
j ∼ U([−1, 1]γ(i), where a high dimension

(d) of the input/feature space leads to the phenomenon of “curse of dimensionality".
Indeed, it is necessary to use many function (N ∝ 10d) to correctly “explore” the input
space and give a good basis function.

Hence, our goal is to construct w(i)
j and b

(i)
j with a simple data-driven manifold

learning in order to have a basis of functions ψ(i)
j that well describe the manifoldM(i)

where the data z(i)(xq, ts) ∈ M(i),∀q,∀s are embedded. It is well-known that the
output of a neuron is given by a ridge function f : RN → R, where N is the number
of neurons, such that f(z1, . . . , zn) = g(aT · z), where g : R → R and a ∈ Rn. The
inflection point of the logistic sigmoid is at (y = 0, ψ(y) = 1/2). The points that satisfy
the following relation [69]:

y = w
(i)
j · z

(i)(xq, ts) + b
(i)
j = 0 (2.104)

form a hyperplane H(i)
j of RM (M dimension of z) defined by the direction of w

(i)
j .

AlongHj , ψ(i)
j is constantly 1/2. We call the points c(i)

j ∈ H
(i)
j the centers of the ridge

function ψ(i)
j . Here the goal is to select N centers c(i)

j that are on the manifold M(i)

(note that this is not achieved by random weights and biases) and find directions w(i)
j

that make ψ(i)
j non-constant/non-trivial alongM(i) (note that for ridge functions there

are many directions for which this does not happen).
Thus, being N << M , we suggest to uniformly random sample N points c(i)

j from
z(xq, ts) to be the centers of the functions ψ(i)

j : in this way the inflection points of ψ(i)
j

are on the manifoldM. Also, we independently randomly sample other N points c̃(i)
j

from the inputs z(xq, ts). Then, we construct the hidden weights as:

w
(i)
j = c̃

(i)
j − c

(i)
j , (2.105)
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in order to set the direction w
(i)
j of the hyperplane H(i)

j parallel to the one connecting
c̃

(i)
j and c(i)

j . By doing so, the ridge function will be constant on a direction orthogonal to
the connection between two points in the manifoldM(i) and along this line will change
in value, so it will be able to discriminate between the points lying on this direction.
Thus, the biases b(i)

j are set as:

b
(i)
j = −w

(i)
j · c

(i)
j . (2.106)

Eq. (2.104) ensures that c(i)
j ∈ H

(i)
j is a center of the ridge function.

2.9 Numerical Examples for RPNN Convergence
In this section, we conduct numerical tests of the proposed RPNN-based best L2 ap-
proximation method as in Eq. (2.73), illustratively we show 2 benchmark functions.
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Figure 2.1: function f1 in Eq. (2.107), with k = 1 and k = 10, presenting high-
oscillations. (a) reference functions; (b)-(c) Convergence diagrams in L2-norm, for
k = 1 and k = 100, respectively. We compare Legendre Polynomials, RPNNs of
best L2 approximation, standard FNN and Cubic Spline. For the RPNNs we compare
3 different selection (naive, function-agnostic and function-informed) of the internal
parameters as explained in Section 2.8. For the RPNNs, we report the mean accuracy
out of 100 different Monte-Carlo selections of the internal parameters. For the FNN, we
report the best network out of 10 runs with different initialization of the weights.

The training of the RPNNs is performed by employing COD as explained in Eq.
(2.70), where we set the tolerance ϵ for the rank estimation to: ϵ = n · eps(∥R∥2)/1000,
wheren is the number of data points,R is the matrix in (2.55) and eps is the built-in MAT-
LAB function returning the floating-point relative accuracy (e.g., eps(1.0)=2.2204E−16).
For a comparison of the use of the SVD-based and the COD-based least-square minimum
norm solutions for different values of the tolerance ϵ, see [156].

We compare RPNNs with classical numerical analysis methods, including the Leg-
endre Polynomials, implemented through a Lagrange barycentric interpolation formula,
and the Cubic spline, implemented with the spline built-in function of MATLAB. For
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the implementation of different strategies for the random selections of the internal pa-
rameters of the RPNNs, see Section 2.8. In particular in the following for all the tests,
we have compared the use of (a) naive random generated RPNNs; (b) function-agnostic
RPNNs and (c) function-informed RPNNs, without employing any further training of
the basis functions. Additionally, for comparison purposes we also compared with a
standard single hidden layer FNN, fully trainable, with N neurons in the hidden layer
and logistic sigmoid activation functions, as implemented by the MATLAB deep learning
toolbox (e.g., the function net=feedforwardnet(N)).
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Figure 2.2: Benchmark examples, function f2 in Eq. (2.108) and f3 in Eq. (2.109)
approaching discontinuity. (a)-(c) reference functions; (b)-(d) Convergence diagrams
L2-norm comparing Legendre Polynomial, RPNNs of best L2 approximation, standard
FNN and Cubic Spline. For the RPNNs we compare 3 different selection (naive, function-
agnostic and function-informed) of the internal parameters as explained in Section 2.8.
For the RPNNs, we report the mean accuracy out of 100 different Monte-Carlo selections
of the internal parameters. For the FNN, we report the best network out of 10 runs with
different initialization of the weights.

For the training process of the FNNs, we utilized the LMA, as implemented in
MATLAB by the option net.trainFcn=‘trainlm’, with 1000 as maximum number of
epochs and 1e − 10 as minimum gradient of the loss function. In the following case
studies, trainlm was able to obtain lower MSEs than any of the other algorithms we
tested. Moreover, the training process is influenced by the first random initialization of
the weights, therefore, we repeated 10 times the training starting from different random
initializations, and we report the best performing FNN from these runs. For each number
of neuronsN , both FNN and RPNNs were trained on n = 5N equally spaced data points
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within the domain of interest (training set).

2.9.1 Case study 1: functions with high-oscillations
Here, we consider the approximation of the function[149]:

f1(x) := log(sin(10kx) + 2) + sin(kx), x ∈ [−1, 1], (2.107)

for k = 1 and k = 10. The reference functions and the results are depicted in Figure 2.1.
As can be noted, for k = 10 the reference function presents high frequency oscillations.
We report the L2-error computed on a dense grid of 10, 000 equally spaced points in
the interval [−1, 1]. Figure 2.1, highlights the high accuracy of both function-agnostic
and function-informed RPNNs, matching the exponential convergence of the Legendre
polynomials up to 8 digits of accuracy. However, beyond 8 digits of accuracy, RPNNs
seems to transition towards a less efficient high-order algebraic convergence (greater than
cubic splines), suggesting potential ill-conditioning issues during training. In this case,
for high-oscillations, naive random selection RPNNs fails and plateaus around only 1
digit of accuracy. Meanwhile, the performance of fully trained FNNs exhibit decent
performance in adapting its basis to the high-oscillations, yet struggling to reach more
than 4 digits of accuracy.

2.9.2 Case study 2: Numerical challenges in approximating functions
near singularities

We consider the approximation of two functions in the vicinity of a discontinuity.
The first diverges approaching the discontinuity at x = −1− ϵ:

f2(x) := 1
1 + ϵ− x

, x ∈ [−1, 1] (2.108)

and the second infinitely increases its oscillations approaching the discontinuity atx = −ϵ
:

f3(x) := sin
(︃

1
x+ ϵ

)︃
, x ∈ [0, 1], ϵ = 1

10π , (2.109)

where for the selected the parameter ϵ = 1
10π , the function f3 has 10 zeros and 5

oscillations in the domain [0, 1] [123]. The reference functions f2 and f3 and the
corresponding numerical results are depicted in Figure 2.2. For both f2 and f3 examples,
we report the L2-error computed on a dense grid of 10, 000 equally spaced points in the
intervals [−1, 1 and [0, 1], respectively. The two functions are infinitely differentiable
in the considered domain, thus, as can be seen in Figure 2.2, the Legendre polynomials
converge exponentially. However, the vicinity of the singularities reduces the convergence
rates of the non-naive RPNNs. Nevertheless, RPNNs ultimately reach 8 digits of accuracy
for f2 and 4 digits of accuracy for f3, outperforming the cubic spline interpolations. While
FNNs encounter greater difficulty with the diverging function f2, they accommodate the
high oscillations of f3.
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3 Learning nonlinear
operators through Random
Projection operator networks

3.1 A new paradigm: State-of-the-art of Operator Learning
In recent years, several advanced ML-based methods for approximating nonlinear op-
erators, particularly focused on partial differential operators, have emerged as promi-
nent approaches: Deep Operator Networks (DeepONet) [86], Fourier Neural Operators
(FNOs) [96], and Graph-based Neural Operators [97, 207] are among the most notable.
DeepONet extends the operator approximation framework from the 1990s by Chen and
Chen [111], utilizing branch and trunk networks to handle input functions and spatial
variables or parameters separately. This approach offers a flexible and robust framework
for learning operators in dynamical systems, with various network architectures available
for either or both branches, enabling solutions to complex dynamical system problems
[86, 78]. Such DeepONet operates at a higher level of abstraction by addressing the iden-
tification/approximation of functional operators, i.e., maps between infinite dimensional
functional spaces.

DeepONets has been generalized into the broader class of Neural Operators. FNOs
[96] take advantage of the Fourier transform to capture global patterns and dependencies
within data, using convolutional layers in the frequency domain and applying the inverse
Fourier transform to return to the original domain. This enables efficient learning of
complex, high-dimensional inputs and outputs with long-range correlations, making it
particularly useful for large spatial domain problems.

The family of graph-based neural Operators [207, 97] represent nonlinear operators
as graphs, where nodes correspond to spatial locations of the output function, learning
the network kernel to approximate the PDE. Each layer defines a map between infinite-
dimensional spaces with finite-dimensional parametric dependencies. The authors also
demonstrate a universal approximation result, proving that this framework can approxi-
mate any continuous nonlinear operator. For a comprehensive review on the applications
of neural operators, the interested reader can refer to the recent work in [208].

DeepONets and Neural Operators, while powerful, have notable limitations. Training

63



3.2. Description of the problem

these models often requires multiple iterations over large datasets to update parameters
in high-dimensional spaces, resulting in significant computational time and memory
consumption. The complexity of nonlinear operators and the size of the problem do-
main further exacerbate the computational load. In addition, hyperparameter tuning,
regularization, and model selection introduce further computational overhead. As a
result, training Neural Operators typically demands considerable resources, such as
high-performance computing clusters or GPUs.

These computational demands can also affect convergence and numerical accuracy.
The high-dimensional parameter space makes it difficult to reach a near-global optimum,
and the optimization algorithm may become trapped in local minima or plateaus, limiting
the network’s ability to accurately approximate underlying operators. Addressing these
challenges requires a careful balance between optimization strategies, regularization
methods, and dataset size to achieve the desired level of accuracy without excessive
computational cost (see critical discussions and approaches to deal with this cost-accuracy
tradeoff in [128, 209, 210, 211]).

3.2 Description of the problem
In this section, we focus on the challenging task of learning linear and nonlinear functional
operators F : U → V which constitute maps between two infinite-dimensional function
spaces U and V . Here, for simplicity, we consider both U and V to be subsets of the
set C(Rd) of continuous functions on Rd. The elements of the set U are functions
u : X ⊆ Rd → R that are transformed to other functions v = F [u] : Y ⊆ Rd ∈ R
through the application of the operator F . We use the following notation for an operator
evaluated at a location y ∈ Y ⊆ Rd

v(y) = F [u](y). (3.1)

These operators play a pivotal role in various scientific and engineering applications,
particularly in the context of PDEs. By effectively learning (discovering from data) such
nonlinear operators, we seek to enhance our understanding and predictive capabilities
in diverse fields, ranging from fluid dynamics and materials science to financial and
biological systems and beyond [19, 86, 66, 128, 78, 45, 67]. One prominent example
is the right-hand side (RHS) evolution operators L associated with PDEs, which govern
the temporal evolution of the associated system dynamics. We denote these evolution
operators in the following way:

v(x, t) = ∂u(x, t)
∂t

= L[u](x, t), x ∈ Ω, t ∈ [0, T ], (3.2)

where u : Ω × [0, T ] ⊆ Rd → R is the unknown solution of the PDE. Given a state
profile u(·, t) : Ω → R at each time t, e.g., the initial condition u0 of the system at
time t = 0, the evolution operator (the RHS of DEs) L provides the corresponding time
derivative (the output v(·, t)) of the system at that time t. Again, a method for learning
the RHS of PDEs with a different ANN architecture than DeepONet was proposed back
in the ’90s in [112]. There, the RHS was estimated in terms of spatial derivatives.
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One can also learn the corresponding solution operators St, which embody both the
time integration and the satisfaction of boundary conditions, of the underlying physical
phenomena. Given the initial condition u0 at time t = 0, the solution operator outputs
the state profile u(·, t) : Ω→ R after a certain amount of time t:

v(x) = u(x, t) = St[u0](x). (3.3)

We will deal with this problem in the part II that will follow.
Although our objective is to learn functional operators from data, which take functions

(u) as input, we must discretize them to effectively represent them and be able to apply
network approximations. One practical approach, as implemented in the DeepONet
framework, is to use the function values (u(xj)) at a sufficient, but finite, number of
locations x1,x2, . . . ,xm, where xj ∈ X ⊆ Rd; these locations are referred to as
“sensors". Other methods to represent functions in functional spaces include the use
of Fourier coefficients [96], wavelets [212], spectral Chebychev basis [213] and graph
neural operators [207]. Regarding the availability of data for the output function, we
encounter two scenarios. In the first scenario, the functions in the output are known
at the same fixed grid y1,y2, . . . ,yn, where yi ∈ Y ; this case is termed as “aligned"
data. Conversely, there are cases where the output grid may vary randomly for each input
function, known as “unaligned" data. If this grid is uniformly sampled and dense enough,
interpolation can be used to approximate the output function at fixed locations. Thus, this
leads us back to the aligned data case. However, if the output is only available at sparse
locations, interpolation becomes impractical. As we will see later in the text, despite this
challenge, our approach can address this scenario, albeit with a higher computational
cost for training the ML model (since, in such cases, the fixed structure of the data cannot
be fully leveraged).

3.3 Preliminaries on DeepONets
Deep Operator Networks (DeepONet) [93] represent a novel neural network architecture
specifically designed to learn functional operators. Unlike traditional neural networks
focused on mapping input vectors to output vectors (e.g., regression, classification),
DeepONet operates at a higher level of abstraction. It aims to approximate functionals
and operators, which are mathematical objects that map functions from one infinite-
dimensional space to another. This capability is theoretically grounded in the universal
approximation theorem for operators, proven by Chen & Chen in 1995 [111]. This
theorem guarantees the existence of neural networks that can approximate any con-
tinuous functional operator to an arbitrary degree of accuracy. Therefore, as universal
approximators, FNNs have the capability to approximate continuous functions effectively
[171, 172, 153, 175]. However, a lesser-known theorem by Chen & Chen (1995) [111],
which gained prominence with the advent of DeepONet by Lu et al. (2021) [86] and
Fourier Neural Operator (FNO) by Li et al. (2020) [96], asserts the existence of a neural
network architecture capable of approximating any continuous nonlinear operator to an
arbitrary degree of accuracy.

Based on the theorem 2.1.2, one can also prove the following one on operators:
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Theorem 3.3.1 (Universal approximation for operators [111]). Suppose that ψ is a
Tauber-Wiener function, X is a Banach space, and K1 ⊂ X , K2 ⊂ Rd are two corre-
sponding compact sets. Let U be a compact set in C(K1), and let F : U → C(K2)
be a nonlinear continuous operator. Then, for any ϵ > 0, there are N,M,m ∈ N, and
network parameters wki, ξkij , θki, βk ∈ R, ck ∈ Rd, xj ∈ K1, with k = 1, . . . , N ,
i = 1, . . . ,M , j = 1, . . . ,m, such that ∀u ∈ U,y ∈ K2:⃓⃓⃓⃓

⃓⃓F(u)(y)−
N∑︂

k=1

M∑︂
i=1

wkiψ
(︁ m∑︂

j=1
ξkiju(xj) + θki

)︁
· ψ(ck · y + βk)

⃓⃓⃓⃓
⃓⃓ < ϵ. (3.4)

To briefly describe how the above Theorem in the original paper of Chen & Chen in
[111] works, let us assume that our goal is to approximate an operatorF , acting on the set
of functions u ∈ U . These functions u (which are inputs to the DeepONet) are assumed
to be known and sampled at m fixed locations xj in the domain K1. The vector U =
(u(x1), u(x2), . . . , u(xm)) ∈ Rm×1 (a column vector) is the input of a single-hidden
layer FNN withM neurons, the so-called branch network, that process the function values
space. At the same time there is a second single-hidden layer FNN with N neurons, the
so-called trunk network, that process the new location y ∈ K2 ⊂ R1×d (for convenience
let us assume it as a row vector) in which we have to evaluate the transformed function
F [u]. For convenience, let us define the vector B = (B1, B2, . . . , BM ) ∈ RM×1

(column vector) of hidden layers value of the branch network:

Bi(U) = ψ
(︁ m∑︂

j=1
ξkiju(xj) + θki

)︁
, i = 1, 2, . . . ,M, (3.5)

and let us define the vector T = (T1, T2, . . . , TN ) ∈ R1×N (row vector):

Tk(y) = ψ(ck
T · y + βk), k = 1, 2, . . . , N. (3.6)

Then, the output of the network as in Eq. (3.4) can be written as:

F [u](y) ≃
N∑︂

k=1

M∑︂
i=1

wkiBi(U)Tk(y)⇔ F [u](y) = TWB = ⟨T ,B⟩W , (3.7)

where the matrix W ∈ RN×M has elements wki. As can be seen, the output of the
scheme is a weighted inner product ⟨·, ·⟩W of the trunk and branch networks. In the next
section, we will take advantage of this formulation for an efficient and accurate training
of the network through the use of random bases.

We note, that the original theorem 3.3.1 considers only two shallow FNNs with a
single hidden layer. On the other hand, DeepONet uses deep networks instead, but also
can incorporate any other type of networks such as CNNs. An extension of the theorem
3.3.1, given by Lu et al. [86], states that the branch network and the trunk network can be
chosen by diverse classes of ANNs, which satisfy the classical universal approximation
theorem. Also, while the Chen and Chen architecture in (3.4) does not include an
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Figure 3.1: Schematic of the Random Projection-based Operator Network (RandONet).
The RandONets first discretizes the input function (u) over a fixed grid of spatial points.
Then it separately embeds the space of the spatial locations (y) into a random hidden layer
(e.g., with sigmoid activations functions) and the space of the discretized functions into
low-distortion kernel-embedding (e.g., with Johnson-Lindenstrauss random projections
[199] or Rahimi and Recht RFFs [158]). Finally, the output is composed of a weighted
(W ) inner product of the branch (B) and trunk (T ) features. The training can be
performed through linear least-squares techniques (e.g., Tikhonov regularization, SVD
and QR decomposition).

output bias, the DeepONet usually utilize biases to improve generalization performance
[86]. More broadly, DeepONets can be considered conditional models, where F [u](y)
represents a function of y given u. These two independent inputs, u and y, are given
as inputs to the trunk and branch networks, respectively. At the end, the embeddings
of u and y are combined through an inner product operation. However, the challenge
remains in finding efficient approaches to train these networks. It is also worth noting
that, as it happens for shallow FNNs, while the universal approximation theorem for
operators guarantees the existence of a successful approximation DeepONet, it does not
offer a numerical method for constructing the specific weights and biases of the networks.
Furthermore, deep learning networks used in DeepONet do not come without limitations.
While they enhance the models’ ability to capture complex relationships, they introduce
challenges in the optimization process. Specifically, determining the values of the
networks parameters and hyperparameters requires significant computational resources,
entailing complexity that can lead to moderate generalization ability and/or numerical
approximation accuracy. Hence, it is nearly implicit that training such DeepONet heavily
relies on parallel computing and GPU-based computations.

Here we present a computationally efficient method for approximating nonlinear
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operators, based on shallow networks with a single hidden layer, as in the paper of
Chen and Chen in [111], coupled with random projections, that relaxes the “curse of
dimensionality” in the training process.

3.4 Random Projection-based Operator Networks (RandONets)
In this section, we present Random Projection-based Operator Networks (RandONets)
[157] for approximating nonlinear operators. Building on previous works, we first
demonstrate that the proposed shallow – single hidden layer – RPNNs are universal
approximators of non-linear operators. Then we discuss how RandONets can be used in
both the aligned and unaligned data cases.

3.4.1 RandONets as universal approximators of nonlinear operators
In this section, we prove that RandONets are universal approximators of nonlinear
operators. Following the methodological thread in [111], we first state the following
proposition:

Proposition 3.4.1. Let K ⊂ Rd compact and U ⊂ C(K) compact and consider a
parametric family of random activation functions {ψ(x;α) : x ∈ Rd, α ∈ A}, where
α ∈ A is a vector of randomly chosen (hyper) parameters, and assume that ψ are
uniformly bounded in Rd × A. Let p be a probability distribution on A. Given any ϵ,
there exists a N ∈ N and i.i.d. sample α1, · · · ,αN from p, chosen independently of f ,
such that for every f ∈ U the random approximation

fϵ(x) =
N∑︂

j=1
cj [f ]ψ(x;αj), (3.8)

approximates f in the sense that with high probability

∥f − fϵ∥L2(µ) < ϵ, (3.9)

for a suitable probability measure µ over K. Moreover, if ψ(x;α) = φ(α · x), for
a L-Lipschitz function ψ, the above approximation is uniform (i.e., in the supremum
norm).

Proof. We only show the uniform approximation result. The L2(µ) approximation
follows similar arguments.

We apply Theorem 3 in [111]. Given a continuous sigmoid (non-polynomial) function
σ, for every ϵ > 0, there exist N ∈ N, (θ̂i,ωi) ∈ R × Rd, i = 1, · · · , N such that for
every f ∈ U ⊂ C(K), there exist a linear continuous functional on U , f ↦→ ci[f ], with
the property that

|f(x)−
N∑︂

i=1
ci[f ]σ(ωi · x + θ̂i)| < ϵ, ∀x ∈ K. (3.10)
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This approximation is deterministic. Note that even though according to Theorem 3
op. cit. this approximation holds for any Tauber-Wiener function (i.e., even for non-
continuous σ) here we must insist on the continuity of σ.

In the above, we obtain a uniform approximation fϵ to f in terms of

fϵ(x) =
N∑︂

i=1
ci[f ]σ(ωi · x + θ̂i) (3.11)

We emphasize the σ is chosen to be a continuous and bounded sigmoid function. Note
that the choice of N , (θi, ωi), are independent of f , while the coefficients ci[f ] depend
on f and in fact f ↦→ ci[f ] is a linear continuous functional on U .

To connect with the random features approach of Rahimi and Rechts we first employ
an expansion of each sigmoid in (3.10) in terms of an RBF (which is eligible to a random
features expansion a la Rahimi and Rechts) and then follow with the expansion of the
RBFs in random features. We follow the subsequent steps:

(a) For each i = 1, · · · , N , we consider the function ϕi, defined by K ∋ x ↦→
ϕi(x;ωi, θ̂i) := σ(ωi · x + θ̂i). By the properties of σ, the functions ϕi ∈ C(K).
Hence, we may apply the approximation of each ϕi in terms of an RBF neural network.
Using standard results (e.g., Theorem 3 [214]) we have that if g ∈ C(Rd) is a bounded
RBF S := span{g(ax + b) : a ∈ R, b ∈ Rd} is dense in C(K). Note that without
loss of generality we may impose the extra assumption that g can be expressed in terms
of the inverse Fourier transform of some function (i.e., an element of a function space on
which the Fourier transform is surjective, for example, g belongs in the Schwartz space).
This assumption also allows us to invoke the standard results of [180], [215] leading to
the same density result). Note that this step does not affect the generality of our results,
as it is only used in the intermediate step (a) which re-expands the general sigmoids used
in (3.10) into a more convenient basis on which the step (b) is applicable. Moreover, the
choice of g is not unique.

Using the above result, we can approximate each ϕi in terms of the functions

ϕi,ϵ(x) =
Mi∑︂
j=1

wijg(aijx + bij), (3.12)

where, importantly, the (wij , aij , bij) ∈ R × R × Rd are independent of the choice of
the function f (as they only depend on (ωi, θ̂i) ∈ Rd × R, which are independent of f
– see (3.10)). The function ϕi,ϵ satisfies the property ∥ϕi − ψi,ϵ∥ < ϵ

N , in the uniform
norm ∀ϵ > 0. Combining (3.10) (and (3.11)) with (3.12), we obtain an approximation
fRBF

ϵ to fϵ in terms of

fRBF
ϵ (x) =

N∑︂
i=1

Mi∑︂
j=1

ci[f ]wijg(aijx + bij), (3.13)

such that ∥fϵ − fRBF
ϵ ∥ < ϵ, hence satisfying by (3.10) that ∥f − fRBF

ϵ ∥ < 2ϵ (in the
uniform norm).
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(b) Now, by appropriate choice of the RBF function g we apply Rahimi and Recht
for a further expansion of each term g(aijx + bij), using the random features RPNN.
By the choice of g as above, this is now possible, and the results of Rahimi and Recht
[160](theorem 2.4.2), are now applicable to g. This holds, since RBFs can be elements
of the RKHS that the Rahimi and Recht framework applies to, i.e., they belong to the
space of functions Gp, defined in (2.37). For such a choice, Theorem 3.1 in [160] can be
directly applied to each of the RBF g in the function (3.13). Under the extra assumption
that ϕ(x;α) = φ(α · x), for φ L-Lipschitz (which without loss of generality can be
shifted so that φ(0) = 0 and scaled so that sup |φ| ≤ 1), we can also apply Theorem 3.2
op. cit for a corresponding uniform approximation. We only present the second case, the
first one being similar. There are two equivalent ways to proceed.

b1) Using Theorem 3.2 op cit, for an L-Lipschitz φ as defined above, for any δ > 0
there exists a random function gδ of the form

gδ(x) =
K∑︂

k=1
ĉkφ(αk · x), (3.14)

where αk is i.i.d. randomly sampled from a chosen distribution p, which approximates
ϵ̂(δ) close g with probability at least 1− δ.

Using (3.14) into (3.13) we obtain

fϵ,δ(x) =
N∑︂

i=1

Mi∑︂
j=1

K∑︂
k=1

ci[f ]wij ĉkφ(αk · (aijx + bij)), (3.15)

which, if δ is chosen such that ϵ̂(δ) < ϵ
NM , satisfies ∥fRBF − fϵ,δ∥ < ϵ, hence,

∥f − fϵ,δ∥ < 3ϵ.
Using a resummation of (3.15) in terms of a single summation index ℓ, we end up

with an approximation fϵ,δ for f in the form

fϵ,δ(x) =
N̂∑︂

ℓ=1
ŵℓ[f ]φ(αℓ · (aℓx + bℓ)), (3.16)

where ŵℓ[f ] = ci[f ]wij ĉk are continuous functionals on U . Hence, we obtain an
approximation in terms of shifted and re-scaled L-Lipschitz random feature functions.

b2) One possible drawback of this expansion is that – see (3.15) it depends both on
the aj , bj and the αk and not on the αk only. An alternative could be to expand each
one of the gj(x) := g(αjx + bj) separately. If it holds that gj ∈ G for each j, then

gj(x) =
K∑︂

k=1
ĉjkφ(α(j)

k · x), j = 1, · · · ,M, (3.17)

where α(j) := {α(j)
k , : k = 1, · · · ,K} ∼i.i.d p for each j = 1, · · · ,M and with the

α̂(j) for different j being independent. When using this approach, we get the expansion
(3.16) with αk i.i.d. from our initial distribution p. Upon resummation the stated result
follows.
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Based on the proposition 3.4.1, we can now prove the following proposition for
universal approximation of functional F : U → R in terms of the RPNN:

Proposition 3.4.2 (Random Projection Neural Networks (RPNNs) for functionals).
Adopting the framework from Proposition 3.4.1, and additionally, let U be a com-
pact subset of C(K) and F be a continuous functional in U . Let us define the
compact set Um ⊆ Rd of vectors, whose elements consist of the values of the func-
tion u ∈ U on a finite set of m grid points x1, . . . ,xm ∈ Rd and denote the vector
u := [u(x1), . . . , u(xm)] ∈ Rm.

Then, with high probability, w.r.t. p, for any ϵ > 0, there exist M,m ∈ N,
α1, . . . ,αM ∈ A, i.i.d distributed from p, such that:⃦⃦⃦⃦

⃦F(u)−
M∑︂

i=1
wiφ (αi · u(x))

⃦⃦⃦⃦
⃦

∞

< ϵ, ∀u ∈ U. (3.18)

Proof. The representation of the function u ∈ U through a finite set of m evaluations
u(xj) is possible by the Tietze Extension Theorem for functionals from the set Um to U
(see [111] for more details). Then the proof comes directly from Proposition 3.4.1.

Finally, using the above ideas and results and possibly allowing for different random
embeddings for the branch and trunk networks, we can prove the following theorem:

Theorem 3.4.1 (RandONets universal approximation for Operators). Adopting the
framework of Propositions 3.4.1 and the notation of Theorem 3.2, and additionally,
let: X be a Banach Space, and K1 ⊂ X , K2 ⊂ Rd, U ⊂ C(K1) be compact sets, and
F : U → C(K2) be a continuous (in the general case nonlinear) operator. Then, with
high probability w.r.t. p, for any ϵ > 0, there exist positive integers M,N,m ∈ N, and
network (hyper)parameters αbr,tr

1 , . . . ,αbr,tr
N ∈ Abr,tr, i.i.d distributed from pα such

that:⃦⃦⃦⃦
⃦F(u)(y)−

N∑︂
k=1

M∑︂
i=1

wkiφ
br
(︁
αbr

i · u(x)
)︁
φtr(αtr

k · y)

⃦⃦⃦⃦
⃦

∞

< ϵ, ∀u ∈ U,y ∈ K2,

(3.19)
where the superscripts br, tr correspond to branch and trunk networks and can be chosen
in generally independently.

Proof. From the Proposition 3.4.1, we have that with high probability, for any ϵ1 > 0,
there are N ∈ N, w̃k[F [u]] and αtr

k ∈ Atr, such that⃦⃦⃦⃦
⃦F(u)(y)−

N∑︂
k=1

w̃k[F [u]]φtr(αtr · y)

⃦⃦⃦⃦
⃦

∞

< ϵ1. (3.20)

Moreover, from Proposition 3.4.1, we have that for any k = 1, . . . , N , w̃k[F [u]] is a
continuous functional on U . We can therefore repeatedly apply Proposition 3.4.2, for
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each k, and obtain approximations of each functional w̃k[F [u]] on Um. Thus, with high
probability, for any ϵ2 > 0 there exist m,M ∈ N, wki, αbr

i ∈ Abr, such that:⃦⃦⃦⃦
w̃k[F [u]]−

M∑︂
i=1

wikφ
br
(︁
αbr

i · u(x)
)︁⃦⃦⃦⃦

∞
< ϵ2. (3.21)

Combining (3.20) and (3.21) we obtain Eq. (3.19). This completes the proof.

3.4.2 Implementation of RandONets
In this section, we present the architecture of RandONets, depicted in Figure 3.1. As in
Theorem 3.3.1, we use two single-hidden-layer FNNs with appropriate random bases as
activation functions. We employ (nonlinear) random based projections for embedding,
in the two separate hidden layer features, both the (high-dimensional) space of the
discretized function (u) and the domain (low-dimensional) of spatial locations (y) of the
transformed output (v(y) = F [u](y)).

Specifically, we propose leveraging nonlinear random projections to embed the space
of spatial locations efficiently, employing parsimoniously chosen random bases. Thus,
the random projected-based trunk feature vector T = (T1, . . . , TN ), as denoted in Eq.
(3.6), can be re-written as:

T = φtr
n (y;αtr) = [φ(y ·αtr

1 + b1), . . . , φ(y ·αtr
N + bN )], (3.22)

where αtr
k ∈ Rd, bk, j = 1, . . . , N are i.i.d. randomly sampled from a continuous

probability distribution function.
Here, when the domain of F [u] is a one-dimensional interval [a, b] ⊆ R, we select

the activation function φ of the trunk network to be the hyperbolic tangent, and we
utilize a parsimonious function-agnostic randomization of the weights as explained in
[156, 69, 95]. In particular, the weights αtr

j are uniformly distributed as U [−aU , aU ].
The bounds aU , of the uniform distributions, have been optimized in [156, 69, 95].

For the branch network, we have implemented two types of embeddings:

• Linear random Johnson-Lindenstrauss (JL) embeddings [199], in which case, we
denote the branch feature vector B = (B1, . . . , BM ) as:

B = ϕbr
M (U) = ϕJL

M (U) = 1√
M
RU , (3.23)

where R is a matrix with elements that are sampled from a standard Gaussian
distribution and U is the vector of function evaluation in the input grid.

• Nonlinear random embeddings [160]. Here, for our illustrations, we use a random
Fourier feature network (RFFN) [158], as embedding of the functional space:

B = φbr
M (U ;αbr) = φRF F N

M (U ;αbr, bbr) =

= 1
m

√︃
2
M

[cos(αbr
1 ·U + bbr

1 ), . . . , cos(αbr
M ·U + bbr

M )],
(3.24)
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where we have two vectors of random variables αbr and bbr, from which we
sample M realizations. The weights αbr

i are i.i.d. sampled from a standard
Gaussian distribution, and the biases bbr

i are uniformly distributed in U [0, 2π].
This explicit random lifting has a low distortion for a Gaussian shift-invariant
kernel distance.

The training of RandONets reduces to the solution of a linear least-squares problem in
the unknownsW , i.e., the external weights of the weighted inner product as in Eq. (3.7).
In what follows, before presenting the numerical implementation, we first present the
treatment of aligned and unaligned data. The aligned data case refers to datasets where the
training pairs are consistently organized, say in a grid, facilitating the learning process. In
such scenarios, the network can more effectively learn the underlying nonlinear operator
mappings due to the structured form of the data. On the other hand, training for unaligned
data presents challenges compared to the aligned data case. In such scenarios, where the
input and output pairs are not consistently organized, the network must learn to identify
and map the complex relationships between disjoint datasets. This lack of alignment
can make it more difficult for the network to capture the underlying nonlinear operator
mappings accurately. In general, achieving high accuracy in this context often demands
greater computational resources and more extensive hyperparameter tuning to ensure the
network converges to an optimal solution.

RandONets for aligned data. Let us assume that the training dataset consists of s
sampled input functions at m collocation/grid points. Thus, the input is included in a
matrix U ∈ Rm×s. Let us also assume that the output function can be evaluated on a
fixed grid of n points yk ∈ Rd, which are stored in a matrix Y ∈ Rn×d (row-vector); d
is the dimension of the domain. In this case, we assume that for each input function u,
we have function evaluations v at the grid Y stored in the matrix V = F [U ] ∈ Rn×s.

While this assumption may appear restrictive at a first glance (as for example some
values in the matrix V could be missing, or Y can be nonuniform, and may change
in time), nonetheless, for many problems in dynamical systems and numerical analysis,
such as the numerical solution of PDEs, entails employing a fixed grid where the solution
is sought. This is clearly the case in methods like FD or FEM-based numerical schemes
without mesh adaptation. Additionally, even in cases where the grid is random or
adaptive, there is still the opportunity to construct a “regular" output matrix V through
“routine" numerical interpolation of outputs on a fixed regular grid. Now, given that
the data are aligned, following Eq. (3.7), we can solve the following linear system
(double-sided) of n× s algebraic equations in N ×M unknowns:

V = F [U ] = φtr
n (Y ;αtr)W φbr

m(U ;αbr) = T (Y )W B(U). (3.25)

Let us observe that –differently from a classical system of equations (e.g., Ax = b), here
we have two matrices from the trunk and the branch features, that multiply the readout
weights W on both sides.

Although the number of unknowns and equations appears large due to the product,
the convenient alignment of the data allows for effective operations that involve separate
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and independent (pseudo-) inversion of the trunk/branch matrices T (Y ) ∈ Rn×N and
B(U) ∈ RM×s. Thus, the solution weights of Eq. (3.25), can be found by employing
methods such as the Tikhonov regularization [216], tSVD, QR/LQ decomposition and
COD[161] of the two matrices, as we will detail later, obtaining:

W =
(︁
T (Y )

)︁†
V
(︁
B(U)

)︁†
. (3.26)

As one might expect, the trunk matrix typically features smaller dimensions compared
to the branch matrix. This is because the branch matrix may involve numerous samples
s of functions (usually exceeding the number n of points in the output grid), along with a
higher number of neurons M required to represent the high-dimensional function input,
as opposed to theN neurons of the RP-FNN trunk which embeds the input space. At the
end, the computational cost associated with the training (i.e., the solution of the linear
least-squares problem) of RandONets is of the order O(M2s+ s2M). Here, we use the
COD algorithm [161] for the inversion of both T and B matrices (for a comparison of
truncated SVD and COD algorithms for RP-FNN training, see in [156]).

RandONets for unaligned data. In contrast to the aligned data, the output V cannot
be usually stored in a matrix, but we have to consider a (long) vector. To address learning
with unaligned data, it is sufficient to assume that for each input function u, the output
v(y) is available at a single random location in the output domain. This encompasses
scenarios with a sparse random grid, where each output in the grid is treated separately,
yet necessitating the introduction of multiple copies of the function u. Thus, let us
assume we have stored the input functions in a matrix U ∈ Rm×S and a vector of outputs
V ∈ R1×S .

Here, S ∈ N denotes both the total number of output functions and the total number
of input functions. Unlike the aligned case, we store the random points for each input
in the matrix Y ∈ Rd×S , where d now represents the columns instead of the rows, and
S reflect the total number of (single) random locations where the individual outputs are
sought.

Now, returning to Eq. (3.7), we notice that with the current format of inputs (both
column-wise), we can express the output using the Hadamard (Shur) product (⊗):

V =
N∑︂

k=1

M∑︂
i=1

wkiTk(Y )Bi(U) =
n∑︂

k=1
Tk(Y )⊗wk B(U), (3.27)

where wk are the rows of the matrix W . This corresponds to the original formulation
of the DeepONet by Lu et al. (2021) [86], where instead of considering the merging of
the branch and trunk networks as a weighted inner product, the focus is on the individual
output at a single location, rather than treating the output as an entire transformed
function. In this scenario, to solve the linear least-squares problem in terms of the
N ×M unknown weights W , we need to reshape the matrix W into a row vector ω,
where the elements ωq = wki, with q = k + (i − 1)n. Then we construct the full
collocation matrix Z ∈ RNM×S , such that the rows zq are obtained as:

zq = Tk ⊗Bi, q = k + (i− 1)N. (3.28)
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Note that the Hadamard product Tk ⊗Bi is possible as both lie in RS .
At this point, the weights ω can be computed, through a (pseudo-) inversion of the

matrix Z, in analogy to what was detailed in section 2.3, resulting in:

ω = Y Z†. (3.29)

We note that the total number S of single outputs can be viewed as proportional to the
product of s (the number of different input functions) and N (the number of points in
the output grid), as explained in the aligned case. In particular, employing an unaligned
training algorithm for aligned data (by augmenting the input function with copies and
reshaping the output) will result exactly in S = Ns. Now, the pseudo-inversion of the
matrix Z will result in a computational cost of the order O

(︁
(Ns)2MN + (MN)2Ns

)︁
,

which is significantly higher. For instance, in the case the values of M , s are simi-
lar/proportional toN , we obtain a transition, in terms of computational complexity, from
an order O(N3) for the aligned case to an order O(N6) for the unaligned case.

To this end, we argue that the unaligned approach described here should only be
considered if the output data display substantial sparsity, suggesting that the random
output grid does not adequately represent the output function. Conversely, we advocate
for prioritizing the aligned approach in other scenarios. Even if it entails performing
interpolation on a fixed grid to generate new aligned output data.

Numerical implementation of the training of RandONets. Below, we provide more
details on the training process of RandONets. From a numerical point of view, the
resulting random trunk T (Y ) and branch B(U) matrices, tend to be ill-conditioned.
Therefore, in practice, we suggest solving Eq. (3.25) as described in 2.3 via a truncated
SVD (tSVD), Tikhonov regularization, QR decomposition or regularized COD [161,
156]. Here, we describe the procedure for the branch network. For the trunk matrix, the
procedure is similar.

The regularized pseudo-inverse (B(U))†, for the solution of the problem in Eq.
(3.26) is computed as:

B(U) = UΣV T = [Ur Ũ ]
[︃
Σk 0
0 Σ̃

]︃
[Vk Ṽ ]T , (B(U))† = VkΣ−1

k UT
r ,

(3.30)
where the matrices U = [Uk Ũ ] ∈ Rk×n ⊕ R(n−k)×n and V = [Vk Ṽ ] ∈ Rk×s ⊕
R(s−k)×s are orthogonal and Σ ∈ Rn×s is a diagonal matrix containing the singular
values σi = Σ(i,i). Here, we select the k largest singular values exceeding a speci-
fied tolerance 0 < ϵ ≪ 1, i.e., σ1, . . . , σk > ϵ, effectively filtering out insignificant
contributions and improving numerical stability.
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3.5 Some numerical Examples of the RandONets
In this section, we present numerical results focusing exclusively on the aligned case
within the framework of RandONets. This choice stems from (a) the observed superior
computational cost of the proposed aligned approach; and (b) the aligned case fits well
with the nature of the considered PDEs problems in dynamical systems and numerical
analysis approaches. Here we report the Antiderivative problem, a benchmark problem
originally addressed in the paper introducing DeepONet by Lu et al. (2021) [86]. Ad-
ditionally, we focus on one other benchmark problem concerning the evolution operator
(right-hand-side (RHS)) of PDEs, the viscous Burgers’ PDE.

In [86], there is a discussion on how to generate the dataset of functions: they compare
Gaussian Random Fields and other random parametrized orthogonal polynomial sets.
Here, we decided to generate the input-output data functions without using precomputed
datasets. We consider a random parametrized RP-FNN with 200 neurons and Gaussian
RBFs combined with a few additional random polynomial terms.

u(t) = w exp
(︁
s(t− c)2)︁+ a0 + a1 t+ a2 t

2, (3.31)

where the parameters w, s, c ∈ R200, a0, a1, a2 ∈ R are all randomized to generate the
dataset of input functions.

In all numerical examples, we select many different realizations of these functions.
In some of these, in selecting the training datasets, we distinguish the case in which we
utilize limited-data for training. In particular, we utilize 15% of the data for the training
set and 85% for the test set. In the case in which we assume that we have available
extensive-data, we utilize 80% of the data for the training set and 20% for the test set.

The range of the values of the parameters (w, s, c, a0, a1, a2) is detailed for each
case study. When possible, the output function is computed analytically. Otherwise, a
well-established numerical method (with sufficiently small tolerances) is used to compute
accurate solutions as the “ground truth". To represent both the input functions u and
output functions v, we use an equally spaced grid of 100 points in the domains K1
and K2 of interest. In particular, in all examples considered here, we take as input,
one-dimensional domains (intervals in [a, b]).

Regarding the architecture of the RandONets, as also detailed in Section 3.4.2,
we investigate and compare the performance of two different RandONets architectures,
with two well-established embedding techniques, respectively: linear random Johnson-
Lindenstrauss (JL) embeddings denoted by ϕJL

M (as presented in Eq. (3.23)) and RFFN
embeddings denoted by ϕRF F N

M (as presented in Eq. (3.24)). These architectures will
be subsequently referred to as RandONets-JL and RandONets-RFFN, respectively. We
will explore the impact of varying the number of neurons (M ) within the single hidden
layer of the branch, effectively controlling the dimension of the branch embedding. For
both RandONets-JL and RandONets-RFFN, the trunk embedding leverages a non-linear
RP-FNN architecture denoted by ϕtr

N (as presented in (3.22)), which utilizes hyperbolic
tangent activation functions ψ and parsimoniously function-agnostic randomization of
the internal weights (as described in [156, 95, 69]). Throughout the experiments, we
will maintain a consistent number of neurons (N = 200) within the trunk’s hidden layer,

76



Chapter 3. Learning nonlinear operators through Random Projection operator networks

thus ensuring a fixed size for the trunk embedding. It is important to note that the
RandONets-JL architecture incorporates a combination of linear and non-linear embed-
ding techniques, whereas the RandONets-RFFN architecture is entirely non-linear.

Given the big difference in the computational cost for the inversion of the branch
matrix compared to the trunk matrix, we decided to fix the number of neurons N =
200 in the trunk RP-FNN embedding for both the RandONets-JL and RandONets-
RFFN. The inversion of the corresponding trunk matrix T ∈ R100×200 thus it is, for
any practical purposes, relatively negligible. Here, we investigate the performance
of the scheme for M = 10, 20, 40, 80, 100, 150, 300, 500, 1000, 2000 neurons in the
branch embedding of both RandONets-JL and RandONets-RFFN and the corresponding
increment in computational cost.

Metrics. To assess the performance of the RandONets, we utilize both the MSE for the
entire test set, as well the L2–error for each output-function in the test set. In particular,
we report the median L2 and the percentiles 5% − 95%. Importantly, we report the
execution time in seconds of the scheme, thus indicating when the computations are
performed with GPU or CPU.

Remark on the DeepONets architectures used. Given the high-computational cost
associated when training DeepONets with the Adaptive Moment Estimation (Adam)
algorithm, (even if we employ a GPU hardware), we do not focus now on performing a
convergence diagram of the scheme or finding the best architecture. For our illustrations,
we just selected a few configurations. In particular, we selected 2 hidden layers for both
trunk and branch networks, each layer with a prescribed number N = {5, 10, 20, 40} of
neurons. Also, we employ hyperbolic tangent as activation functions for both branch and
trunk networks. We will refer to the performance of these vanilla DeepONets in Tables
with the notation [N,N ]. We remark that the number of free trainable parameters ζ of
such DeepONets configurations is m ×N + 3N ×N + 5N , (e.g., N = 40,m = 100,
then ζ = 9000) which is not higher than the biggest considered RandONets. Indeed,
RandONets have a number of free trainable parameters equal to N ×M (e.g., in the
biggest case considered here, N = 200, M = 2000, it corresponds to ζ = 400, 000
parameters). However, as we will show, despite the high number of parameters, such
RandONets can be trained in around one second. Finally, we also remark that when
employing a gradient-descent based algorithm, like the Adam one, there is no guarantee
of convergence, and the generalization of the network can be moderate. We anyway
decided to train DeepONet for a fixed number of iterations equal to 20, 000 for ODE
benchmarks and to 50, 000 for the PDEs.
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Remark on the hardware and software used. In our experiments, we utilized the
DeepONet framework implemented in Python with the DeepXde library [93], leveraging
TensorFlow as the back-end for computations. These computations are executed on a
GPU NVIDIA GeForce RTX 2060, harnessing its parallel processing capabilities to
expedite training and evaluation. Additionally, we ran the Python code on Google
Colab using a Tesla K80 GPU, resulting in computational times approximately 6 to
7 times slower than those reported in the main text. While we do not include these
execution times in the main text, we mention them here as a reference. In contrast, the
RandONets framework is implemented in MATLAB 2024a and executed on a single
CPU of an Intel® Core™ i7-10750H CPU @ 2.60GHz, with 16 GB of RAM. The code
is available at https://github.com/GianlucaFabiani/RandONets.

3.5.1 A simple (pedagogical) ODE benchmark problem
We start with a very simple benchmark problems involving non-autonomous ODEs
subject to a time dependent source term u(t), in the form:

dv(t)
dt

= f(t, v) + u(t), v(0) = v0, t ∈ [0, T ], (3.32)

with some forcing time-dependent input function u(t). The solution function v(t)
depends directly on the forcing term, the function u(t). Thus, there exists an operator
that maps u(t) into v(t). The task here, different from the one for the PDEs, is to learn
the “solution operator” for one initial condition. Of course, learning the full solution
operator would need a set of different initial conditions as in [86] but as mentioned these
serve purely for pedagogical purposes.

Case study 1: Antiderivative operator

The first benchmark problem that we consider is the antiderivative operator[217], thus the
solution v(t) given the function u(t) of the following (phase-independent, f(t, v) ≡ 0)
ODE problem:

dv(t)
dt

= u(t), v(0) = v0, t ∈ [0, 1], (3.33)

thus learning the linear operator F [u](t) = v(t). The corresponding analytical an-
tiderivatives are:

v(t) = w

(︃
−
√
πerfi

(︁√
s(c− t)

)︁
/(2
√
s)
)︃

+ a0t+ a1t
2/2 + a2t

3/3 + C, (3.34)

where erfi is the error function andC is a constant that has to be fit by the initial condition
v(0) = v0. We select v0 = 0 and we set ṽ(t) = v(t)− v(0) as the output function.

The values of the parameters w, a0, a1, a2 ∼ U [−1, 1], s ∼ U [0, 500] and c ∼
U [0, 1], of the RP-FNN based function dataset, as in Eq. (3.31), are (element-wise)
sampled from the corresponding aforementioned uniform distributions. To generate the
data, we used 1000 random realizations. We considered two different sizes of training
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Figure 3.2: Case study 1: Antiderivative Operator, in Eq. (3.33). (First row) extensive-
data case, 800 training input functions; (Second row) limited-data case, 150 training input
functions. (a), (d) MSE for the training and test sets, with DeepONets with 2 hidden layers
(indicatively) with 40 neurons each, for both the branch and trunk networks. (b), (c), (e),
(f) MSE and L2 error, 5%− 95% range and median, of the RandONets, for different size
M of the branch embedding. The errors are computed w.r.t only the output functions
in the test dataset. Comparison of Johnson-Lindenstrauss (JL) branch embedding with
RFFN embeddings. We set the size of the Trunk network to N = 200 and the grid of
input points to m = 100. Numerical approximation accuracy vs. (b)-(e) the number
of neurons M in the hidden layer of the branch network; and (c)-(f) vs. computational
times in seconds.

sets. In particular, we used 15% for the training and 85% for the test set (we remind
the reader that we call this limited-data case). As described above, for the extensive
data-case, we used 80% for the training and 20% for the test set.

In Figure 3.2, we depict the numerical approximation accuracy for the test set in terms
of the MSE and percentiles median, 5%−95% ofL2–errors. As shown, the training of all
RandONets takes approximately less than 1 second and is performed without iterations.
In Table 3.1, we summarize the comparison results with the vanilla DeepONet in terms
of the best accuracy and best computational times. For the RandONets, we used 100
neurons for the JL embedding, and 2000 neurons for the RFFN embedding for the branch
network. As shown, the JL-based RandONets gets an astonishing almost machine-
precision accuracy of MSE ≃ 1E-23, L2 ≃ 1E-11 with just 40 neurons in the branch
with a computational time of ≃ 0.01 seconds. Such “perfect” results are due to the
simplicity of the problem and its linearity. The nonlinear RFFN embedding result in a
lower performance with respect to the JL RandONets, for this linear problem, obtaining
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Table 3.1: Case study 1: Antiderivative Operator in Eq. (3.33). We report Mean
Squared Error (MSE), percentiles (median, 5%, 95% of L2 error across the test set.
The extensive-data case comprises 800 training functions, while the limited-data case
uses 150 functions as training. We employed vanilla DeepONets with 2 hidden layers,
denoted as [N,N ] neurons, for both the branch and the trunk. We set N = 5, 10, 20, 40.
DeepONets are trained with 20, 000 Adam iterations (with learning rate 0.001 and then
0.0001). We report the RandONets encompassing Johnson-Lindenstrauss (JL) Featured
branch network (with M = 100 neurons) as well as the RFFN branch (with M = 2000
neurons).

data ML-model MSE 5% L2 median–L2 95% L2 comp. time

80% DeepONet [5, 5] 9.83E−01 2.31E+00 6.90E+00 1.80E+01 4.75E+02 (GPU)
DeepONet [10, 10] 2.28E−03 2.43E−01 4.37E−01 7.46E−01 4.62E+02 (GPU)
DeepONet [20, 20] 4.39E−04 1.26E−01 2.00E−01 2.97E−01 4.79E+02 (GPU)
DeepONet [40, 40] 1.22E−04 7.04E−02 1.03E−01 1.60E−01 5.23E+02 (GPU)

RandONets–JL (100) 9.43E−23 4.33E−11 8.01E−11 1.68E−10 1.02E−02 (CPU)
RandONets–RFFN (2000) 8.09E−16 6.81E−08 1.73E−07 5.99E−07 1.96E−01 (CPU)

15% DeepONet [5, 5] 8.88E−02 1.08E+00 2.48E+00 5.15E+00 1.05E+02 (GPU)
DeepONet [10, 10] 2.99E−03 2.73E−01 4.91E−01 8.51E−01 9.78E+01 (GPU)
DeepONet [20, 20] 7.48E−04 1.51E−01 2.54E−01 4.07E−01 1.13E+02 (GPU)
DeepONet [40, 40] 1.16E−02 2.57E−01 7.36E−01 2.12E+00 1.24E+02 (GPU)

RandONets–JL (100) 1.66E−21 2.22E−10 3.74E−10 6.11E−10 3.60E−03 (CPU)
RandONets–RFFN (2000) 8.12E−12 8.14E−06 2.03E−05 5.25E−05 1.88E−02 (CPU)

anMSE ≃ 1E-16 and a median L2 ≃ 1E-08, using 2000 neurons in the branch, with a
computational time of less of the order 0.1 seconds. We employ vanilla DeepONets with
two hidden layers, denoted as [N,N ] neurons, in both Trunk and Branch. We observe
a rather slow convergence in accuracy by increasing the size of the Vanilla DeepONets.
However, the vanilla DeepONets need many iterations to reach an adequate accuracy.
After 20, 000 iterations, the accuracy in the extensive-data case, for N = 40, is around
1E-04 in terms of MSE, but the L2 error is on the order of 1E-01. In the limited-data
case, the vanilla DeepONet, withN = 40, gives a rather poor performance: the MSE on
test data is stuck at 1E-02 thus, overfitting. The corresponding L2 error is on the order
of 1. Indeed, the DeepONet with N = 20 performs better. We can explain such failure
due to difficult dataset considered, that needs sufficient input-output functions to be well
represented.

Our results for the two hidden layers vanilla DeepONet are in line with the ones
presented in [86]. Also, for investigations on different architectures, one can refer to
the same paper. In particular, there, for the vanilla DeepONet with 4 hidden layers and
[2560, 2560, 2560, 2560] neurons in both trunk and branch, they report an MSE of around
1E-08 after 50, 000 iterations.

As a matter of fact, for this case study, the execution times (training times) for
RandONet, utilizing both linear JL and nonlinear RP-FNN random embeddings, are
10,000 times faster, while achieving L2 accuracy that is 6 to 10 orders of magnitude
higher.
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3.5.2 Approximation of Evolution Operators (RHS) of time-dependent
PDEs

Here, we consider a benchmark problem relative to the identification of the evolution
operator, i.e., the right-hand-side (RHS) of time-dependent PDEs:

v(x) = ∂u(x, t)
∂t

= L(u)(x, t). (3.35)

The output function, the time derivative, (i.e., the right-hand-side of the evolutionary
PDE) depends on the current state profile u(x, t) at a certain time t. In the following
examples, we do not consider the limited-data case.

Case study 2: 1D viscous Burgers PDE

We consider the nonlinear evolution operator of the Burgers’ equation, given by:

v = ∂u

∂t
= ν

∂2u

∂x2 − u
∂u

∂x
, (3.36)

where ν = 0.01.
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Figure 3.3: Case study 2: 1D nonlinear Burgers’ PDE (Eq. (3.36)). We used 1600
training input functions: (a) MSE when using a vanilla DeepONet with 2 hidden layers
with (indicatively) 40 neurons each, for both branch and trunk networks. (b), (c), MSE
and L2 error percentiles (median, 5%− 95%), of the RandONets for different size M of
the branch embedding. Comparison of Johnson-Lindenstrauss random embeddings, as
in Eq. (3.23), with RFFN embeddings, as in Eq. (3.24). We have set the size of the trunk
network toN = 200 and the grid of input points tom = 100. Numerical approximation
accuracy vs. (b) number of neurons M in the hidden layer of the branch network; and
(c) vs. computational time in seconds.

The output function can be computed analytically/symbolically based on (3.31). The
parameters w, a0, a1, a2 ∼ U [−0.05, 0.05], s ∼ U [0, 50] and c ∼ U [−1, 1], of the
RP-FNN based function dataset, as in Eq. (3.31), to represent the functional space are
(element-wise) uniformly distributed. Here we select w in a smaller range, as higher
values may correspond to high second derivatives approaching singularity.
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Table 3.2: Case study 2: Burgers’ Nonlinear PDE in Eq. (3.36). We report Mean
Squared Error (MSE) and percentiles (median, 5%− 95%) of L2 approximation errors,
for the test set. We use 1600 training functions. We employ DeepONets with 2 hidden
layers with [N,N ] neurons in both the branch and trunk. We set N = 5, 10, 20, 40.
DeepONets are trained with 50, 000 Adam iterations (with learning rate 0.001 and then
0.0001). We report the RandONets results encompassing Johnson-Lindenstrauss (JL)
Featured branch network (with M = 40 neurons) and the RFFN branch network (with
M = 2000 neurons).

ML-model MSE 5% L2 median–L2 95% L2 comp. time
DeepONet [5, 5] 9.00E−03 3.70E−01 7.60E−01 1.66E+00 2.16E+03 (GPU)

DeepONet [10, 10] 4.75E−03 3.43E−01 5.59E−01 1.20E+00 2.01E+03 (GPU)
DeepONet [20, 20] 1.51E−03 2.24E−01 3.28E−01 6.16E−01 2.40E+03 (GPU)
DeepONet [40, 40] 5.50E−04 1.30E−01 2.03E−01 3.82E−01 2.34E+03 (GPU)
RandONets–JL (40) 1.09E−02 3.32E−01 8.11E−01 1.91E+00 1.29E−02 (CPU)

RandONets–RFFN (2000) 1.12E−12 1.01E−05 1.04E−05 1.19E−05 1.51E+00 (CPU)

To generate the data, we used 2000 random realizations of the parameters. We set
80% for training and 20% for testing. In Figure 3.3, we report the accuracy w.r.t. the test
set in terms of the MSE and the median (and percentiles 5% − 95%) of L2–errors. As
shown, the training of all RandONets takes approximately less or around one second. In
Table 3.2, we also report the comparison results in terms of the numerical approximation
accuracy and computational times.

Due to the inherent non-linearity of this example, linear JL random embeddings
exhibit limitations in efficiently approximating the non-linear operator. This observa-
tion aligns with the theoretical understanding of JL embeddings being most effective in
capturing linear relationships. Unlike case study 2, the non-linearity within only the
trunk architecture appears insufficient for this specific problem. Therefore, incorporat-
ing non-linearity also in the branch embedding becomes crucial for achieving optimal
performance.

Interestingly, the performance of JL embeddings approaches that of fully trained,
entirely non-linear vanilla DeepONets. While DeepONets can achieve a minimum Mean
Squared Error (MSE) on the order of 1E−04 and anL2 error on the order of 1E−01, their
performance is not significantly better than the JL approach. In contrast, the RandONets-
RFFN architecture emerges as the clear leader in this specific case study. It achieves a
remarkably low MSE on the order of 1E−12, demonstrating its superior capability in
handling the non-linearities present in this example.

Also for this case study, RandONets, utilizing both JL and RP-FFN random em-
beddings, demonstrates execution times (training times) that are 3 to 5 order times
faster, while achieving L2 accuracy that is 4 orders of magnitude higher in the case of
RandONets-RFFN, and of a similar level of accuracy in the case of JL random embed-
dings.
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3.6 Discussion
The results presented in this chapter represent significant advances in both RPNNs and
RandONets, with important implications for scientific ML, especially in the context of
numerical analysis and complex systems modeling.

RPNNs and Best Approximation. Our work on RPNNs has established a strong
theoretical foundation by proving exponential convergence for smooth functions, inspired
by the best approximation polynomials in Lp spaces. This convergence suggests that
RPNNs are a promising alternative to traditional methods for function approximation,
offering robust and efficient solutions without the iterative training required by fully
connected neural networks (FNNs). While classical FNNs can theoretically match or
exceed the performance of RPNNs, they are often constrained by the limitations of current
optimization algorithms, which struggle to exceed four-digit precision [149].

The practical results further demonstrate that RPNNs can effectively approximate a
wide variety of functions, including those with steep gradients, high oscillations, and near-
discontinuities. However, certain limitations were observed, especially when dealing
with functions that exhibit rapid oscillatory or divergent behavior. Addressing these edge
cases through more sophisticated basis function selection and enhanced regularization
techniques presents a clear direction for future research.

These findings open the way to new avenues in ML, where RPNNs could serve as a key
component in solving forward and inverse problems. Their rapid convergence and com-
putational efficiency make them especially suited for applications where computational
cost is a concern, such as real-time modeling or large-scale simulations in complex sys-
tems. Additionally, their success in approximating low-dimensional functions suggests
that extensions to higher-dimensional problems, though currently challenging, could
yield fruitful results. Investigating function-informed basis selection strategies for such
cases would be a logical next step.

RandONets for Operator Learning. The introduction of RandONets as a tool for
operator learning further extends the utility of random projection-based methods. Our
work builds on three keystones: (a) random embeddings [199, 160, 158, 203] for nonlinear
random embeddings, (b) one-hidden layer (shallow) RPNNs whose “birth” can be traced
back to early 90s [195, 194, 153], and, (c) tailor-made numerical analysis techniques
for the solution of a linear ill-posed problem. First, based on the above, we prove the
universal approximation property of RandONets. By leveraging nonlinear low-distortion
random embeddings, we have shown that RandONets can achieve remarkable accuracy
and efficiency when approximating both linear and nonlinear operators, such as the
solution operators of ODEs and PDEs. In particular, RandONets outperform vanilla
DeepONets by several orders of magnitude in both computational speed and accuracy
for the benchmark problems considered. This is especially notable for linear operators,
where RandONets with JL embeddings nearly achieve machine-precision accuracy.

The performance boost observed with nonlinear operators, such as in the Burgers’s
PDEs, highlights the potential for RandONets to address more challenging problems

83



3.6. Discussion

in operator learning, where traditional deep learning methods like DeepONets are less
efficient. RandONets’ superior performance can be attributed to their ability to efficiently
leverage random embeddings, which offer a compact and effective representation of the
underlying operator without the need for deep architectures or costly training procedures.

Comparison with Related Work and Relevance of the Presented Results. To the best
of our knowledge, the earliest approach that utilized random sampling and fixed weights
for training DeepONet is by Bolager et al. [181]. Their method draws inspiration from
geometric random sampling techniques, as also implemented in [45], a part of this thesis.

In particular in [181], the authors investigated random sampling for various deep
learning frameworks, including a POD-based DeepONet where only the branch net-
work is sampled, while the trunk is not considered. In contrast, our work is the first
to propose a double randomization strategy for both the branch and trunk networks.
This is achieved through a single-shot approach with straightforward random embed-
dings, which has proven to be computationally highly efficient. Specifically, as said, our
method achieves up to five orders of magnitude faster training than vanilla fully-trained
DeepONet, enabling training in under one second while achieving up to 10 orders of mag-
nitude improvement in L2-norm accuracy (and 20 orders of magnitude in mean squared
error, MSE). Such big improvement sets the state-of-the-art in training DeepONets.

Subsequently, Lee and Shin [218] independently explored Least-Squares training
for the branch and trunk layers. However, their approach relies on inefficient sampling
methods that require additional optimization through iterative line searches and iterative
two-steps alternate least-squares to refine the embedding. Specifically, their technique
employs a prescribed trunk QR-based pseudo-inverse and iterative QR-Least-Squares op-
timization for the branch layer. While their method demonstrates potential for improving
suboptimal random embeddings, it incurs significant computational overhead, as each
training epoch becomes more resource-intensive. The combination of efficient random
projections/samplings [181, 157, 160, 158, 199] and their algorithm has not yet been
investigated in literature.

Another relevant contribution is the methodology proposed by Nelsen and Stuart
[219], which adopts a spectral approach leveraging Random Feature Maps. While
innovative, their framework has practical limitations. For example, in their work, the
random feature map for the Darcy equation is constructed with full knowledge of the
underlying physics. Consequently, this leads to a neural operator whose naive evaluation
can be as computationally expensive as solving the original PDE.

Nelsen and Stuart argue that RFMs enable resolution invariance when paired with
techniques like the Fast Fourier Transform (FFT). However, this resolution invariance is
contingent upon highly refined discretizations, often requiring dense grids to maintain ac-
curacy. For sparse grids or domains with complex geometries, their method becomes less
effective, as its performance heavily depends on grid resolution and Fourier coefficient
fitting.

In contrast, DeepONets and RandONets utilize are built on a straightforward dis-
cretization grid, supported by universal approximation theorems. For grids that differ
from the desired configuration, interpolation techniques allow for adaptation, achieving
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effective resolution invariance. While interpolation introduces minor errors, such errors
are present in all methods involving mismatched discretizations. Unlike the approach
of Nelsen and Stuart, our framework avoids dependencies on Fourier basis fitting across
resolutions and the associated challenges with non-equally spaced grids.

Broader Implications and Future Directions. The broader implication of this work
is that RandONets can serve as versatile building blocks in the ML toolkit for both
forward and inverse problems. Their theoretical guarantees, combined with the demon-
strated practical efficiency, suggest that these architectures can be highly impactful in
complex systems modeling. For example, RandONets could be employed in learning the
right-hand sides of macroscopic laws in ABMs or in discovering coarse-grained PDE
representations from microscopic simulations.

Moreover, the rapid convergence and computational simplicity of these methods offer
an appealing alternative to more complex neural network architectures, such as deep
learning or convolutional neural networks, in scenarios where interpretability, speed,
and sustainability are critical. RandONets, in particular, present an exciting opportunity
to extend the frontier of operator learning, making it more accessible and scalable,
especially in high-dimensional or computationally expensive problems.

Looking ahead, the potential to further refine these methods lies in the exploration of
function- and operator-informed basis function selection strategies, improved regulariza-
tion techniques, and the development of algorithms capable of handling high-dimensional
problems. In addition, a comprehensive comparison with other state-of-the-art methods,
including advanced DeepONets and Fourier Neural Operators (FNOs), will provide a
clearer picture of the relative strengths and weaknesses of each approach. By continu-
ing to develop these techniques, we aim to unlock new capabilities in ML for scientific
applications, ultimately improving our ability to model and understand complex systems.

We believe that our work will trigger further advances in the field, paving the way
for further exploration of how numerical analysis and concepts from the numerical
bifurcation theory, can enhance the applicability and interpretability of shallow neural
networks in several ways, potentially allowing them to outperform DNNs both in accuracy
and sustainability for specific tasks of scientific ML.
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4 Solution of the Forward
Problems I: bifurcations of
nonlinear stationary PDEs

This chapter and the next one examine the use of RPNNs to address various stationary
and time-dependent PDEs, as well as stiff ODEs and DAEs. We will explore the
integration of classical numerical techniques with RPNNs, emphasizing the benefits
of hybrid approaches in improving stability and convergence. A central theme of this
chapter is the importance of exploiting concepts from numerical analysis and dynamical
systems’ theory when applying ML techniques to complex problems. To paraphrase a
well-known saying, while ML can be effective on its own, its potential is greatly enhanced
when combined with established numerical methods.

Additionally, we provide a comprehensive analysis of constructing bifurcation dia-
grams for PDE solutions using RPNNs, which offers new insights into their application
in complex dynamical systems.

4.1 Overview of the forward problem in complex systems

The solution of forward problems in the context of DEs – both PDEs and ODEs –
poses several significant challenges, particularly when addressing issues such as stiff-
ness, complex geometries, and high-dimensionality. These challenges are particularly
pronounced in applications where rapid solutions are crucial, as delays can lead to sub-
optimal decision-making. For instance, in control systems, timely computations are
essential for real-time adjustments. Similarly, in fields like climate modeling or financial
forecasting, the need for immediate insights can be critical for effective responses to
rapidly changing conditions.

While Physics-Informed Neural Networks (PINNs) have shown potential in solving
DEs by embedding physical laws into neural networks, their training phase is compu-
tationally demanding and slow, making them impractical for real-time or large-scale
applications. This performance bottleneck limits their usability in scenarios that require
quick and efficient solutions. Here, we aim to improve these approaches, challenging the
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already established flagship solvers of numerical analysis, to make them more viable for
practical, time-sensitive tasks.

Forward problems are inherently connected to complex system simulations, where
understanding the macroscopic emergent behavior often necessitates thorough analysis
of both stationary solutions and bifurcation diagrams. This analysis is vital for mak-
ing predictions and studying rare events, which can be critical in applications such as
epidemiology or disaster management. Accurate solutions are paramount; poor solvers
can yield inaccurate results that distort our understanding of the underlying models. For
example, if a system is characterized by stiffness and we employ inadequate numerical
methods, we may misinterpret the behavior we have learned through ML techniques.

In high-dimensional, multiscale complex systems, such as those modeled by ABM
frameworks, the computational demands can escalate dramatically. Simulating millions
of ODEs, often tackled with simple methods like Euler’s, can become untenable if
stiffness is present. In such cases, the inability to solve these equations accurately
and efficiently can hinder our ability to draw meaningful conclusions from our models,
emphasizing the necessity for robust, fast, and precise solvers. Thus, advancing the
methodologies for solving forward problems in DEs is critical not only for theoretical
advancements but also for practical applications across various domains.

4.2 Numerical solution and bifurcation analysis of Nonlin-
ear Partial Differential Equations

In this section, we introduce the general setting for the numerical solution and bifurcation
analysis of the general class of nonlinear PDEs with RPNNs based on basic numerical
analysis concepts and tools (see, e.g., [220, 221, 222, 106, 223]). Let’s start from a
nonlinear PDE of the general form:

Lu = f(u, λ) in Ω, (4.1)

with boundary conditions:

Blu = gl, in ∂Ωl , l = 1, 2, . . . ,m , (4.2)

where L is the partial differential operator acting on u, f(u, λ) is a nonlinear function of
u and λ ∈ Rp is the vector of model parameters, and {∂Ωl}l denotes a partition of the
boundary.

A numerical solution ũ = ũ(λ) to the above problem at particular values of the
parameters λ is typically found iteratively by applying e.g., Newton-Raphson or matrix-
free Krylov-subspace methods (Newton-GMRES) (see, e.g., [224]) on a finite system of
M nonlinear algebraic equations. In general, these equations reflect some zero residual
condition, or exactness equation, and thus the numerical solution that is sought is the
optimal solution w.r.t. the condition in the finite dimensional space. Assuming that ũ is
fixed via the degrees of freedom w ∈ RN – we use the notation ũ = ũ(w) — then these
degrees of freedom are sought by solving:

Fk(w1, w2, . . . wj . . . wN ;λ) = 0 , k = 1, 2, ...M . (4.3)
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Many methods for the numerical solution of Eq. (4.1), (4.2) are written in the above
form after the application of an approximation and discretization technique such as FD,
FEM and (Pseudo-) Spectral Expansion, as we detail next.
The system of M algebraic equations (4.3) is solved iteratively (e.g., by Newton’s
method), that is by solving until a convergence criterion is satisfied, the following lin-
earized system:

∇wF (w(n), λ) · dw(n) = −F (w(n), λ), w(n+1) = w(n) + dw(n). (4.4)

∇wF is the Jacobian matrix:

∇wF (w(n), λ) =
[︃
∂Fk

∂wj

]︃⃓⃓
(w(n),λ)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F1
∂w1

∂F1
∂w2

. . . ∂F1
∂wj

. . . ∂ F1
∂wN

∂F2
∂w1

∂F2
∂w2

. . . ∂F2
∂wj

. . . ∂F2
∂wN

...
...

. . .
...

. . .
...

∂Fk

∂w1
∂Fk

∂w2
. . . ∂Fk

∂wj
. . . ∂Fk

∂wN

...
...

. . .
...

. . .
...

∂FM

∂w1
∂FM

∂w2
. . . ∂FM

∂wj
. . . ∂FM

∂wN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.5)

If the system is not square (i.e., whenM ̸= N ), then at each iteration, one would perform,
e.g., QR-factorization of the Jacobian matrix

∇wF (w(n), λ) = RTQT =
[︁
RT

1 0
]︁ [︃QT

1
QT

2

]︃
, (4.6)

where Q ∈ RN×N is an orthogonal matrix and R ∈ RN×M is an upper triangular
matrix. Then, the solution of Eq.(4.4) is given by:

dw(n) = −Q1R
−1
1 · F (w(n), λ).

Branches of solutions in the parameter space past critical points on which the Jacobian

matrix∇F with elements
∂Fk

∂wj
becomes singular can be traced with the aid of numerical

bifurcation analysis theory (see, e.g., [225, 223, 226]). For example, solution branches
past saddle-node bifurcations (limit/turning points) can be traced by applying the so
called “pseudo" arc-length continuation method [221]. This involves the parametrization
of both ũ(w) and λ by the arc-length s on the solution branch. The solution is sought in
terms of both ũ(w; s) and λ(s) in an iterative manner, by solving until convergence the
following augmented system:[︃

∇wF ∇λF
∇wN ∇λN

]︃
·
[︃
dw(n)(s)
dλ(n)(s)

]︃
= −

[︃
F (w(n)(s), λ(s))

N(ũ(w(n); s), λ(n)(s))

]︃
, (4.7)

where
∇λF =

[︁
∂F1
∂λ

∂F2
∂λ . . . FM

∂λ

]︁T
, (4.8)

89



4.2. Numerical solution and bifurcation analysis of Nonlinear Partial Differential Equations

and

N(ũ(w(n); s), λ(n)(s)) =(ũ(w(n); s)− ũ(w; s)−2)T · (ũ(w)−2 − ũ(w)−1)
ds

+

(λ(n)(s)− λ−2) · (λ−2 − λ−1)
ds

− ds,
(4.9)

is one of the choices for the so-called “pseudo" arc-length condition (for more details see,
e.g., [221, 222, 225, 223, 226]); ũ(w)−2 and ũ(w)−1 are two already found consequent
solutions for λ−2 and λ−1, respectively and ds is the arc-length step for which a new
solution around the previous solution (ũ(w)−2, λ−2) along the arc-length of the solution
branch is being sought. Additional information on numerical continuation can be found
in Appendix B.3.1.

4.2.1 Finite Differences and Finite Elements cases: the application of
Newton’s method

In FD methods, one aims to find the values of the solution per se (i.e., uj = wj) at a
finite number of nodes within the domain. The operator in the differential problem (4.1)
and the boundary conditions (4.2) are approximated by means of some FD operator:
Lh ≈ L ; Bh

l ≈ Bl: the finite operator reveals in some linear combination of the
function evaluations for the differential part, while keeping non-linear requirement to
be satisfied due to the presence of nonlinearities. Then, approximated equations are
collocated in internal and boundary points xk, giving equations that can be written as
residual equations (4.3).

With FEM and SE methods, the aim is to find the coefficients of a properly chosen
basis function expansion of the solution within the domain such that the boundary
conditions are satisfied precisely. In the Galerkin-FEM with Lagrangian basis (see, e.g.,
[102, 106]), the discrete counterpart seeks for a solution of Eq. (4.1)-(4.2) in N points
xj of the domain Ω according to:

u =
N∑︂

j=1
wjϕj , (4.10)

where the basis functions ϕj are defined so that they satisfy the completeness requirement
and are such that ϕj(xk) = δjk. This, again with the choice of nodal variables to be the
function approximation at the points, gives that u(xj) = wj are exactly the degrees of
freedom for the method. Then, the numerical approximation of the solution is achieved
by setting zero the weighted residuals Rk, k = 1, 2, . . . N defined as:

Rk =
∫︂

Ω
(Lu− f(u, λ))ϕk dΩ +

m∑︂
l=1

∫︂
∂Ωk

(Bku− gl)ϕl dσ, (4.11)

where the weighting functions ϕi are the same basis functions used in Eq. (4.10) for the
approximation of u. The above constitutes a nonlinear system of N algebraic equations
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that for a given set of values for λ are solved by Newton-Raphson, thus solving until
convergence the following linearized system seen in Eq. (4.4), where Rk plays the role
of Fk.

Note that the border rows and columns of the Jacobian matrix (4.5) are appropriately
changed so that Eq. (4.4) satisfy the boundary conditions. Due to the construction of the
basis functions, the Jacobian matrix is sparse, thus allowing the significant reduction of
the computation cost for the solution of (4.4) at each Newton’s iteration.

4.2.2 RPNNs Collocation: the application of Newton’s method
In an analogous manner to FE methods, a physics-indormed RPNN-based approach aim
at solving the problem (4.1)-(4.2), using an approximation ũN of u with N neurons as
an ansatz. The difference is that, similarly to FD methods, the equations are constructed
by collocating the solution onMΩ points xi ∈ Ω andMl points xk ∈ ∂Ωl, where Ωl are
the parts of the boundary where boundary conditions are posed, see, e.g., [106]:

LũN (xi;w) = f(ũN (xi;w), λ), i = 1, . . . ,MΩ

BlũN (xk;w) = gl(xk), k = 1, . . . ,Ml, l = 1, . . . ,m.

Then, if we denote M = MΩ +
∑︁m

l=1 Ml, we have a system of M nonlinear equations
with N unknowns that can be rewritten in a compact way as:

Fk(w, λ) = 0, k = 1, . . . ,M,

where for k = 1, . . . ,MΩ, we have:

Fk(w, λ) = L

(︃ N∑︂
i=1

wjψ(αj · xi + βj)
)︃
− f

(︃ N∑︂
i=1

wjψ(αj · xi + βj)
)︃

= 0,

while for the l-th boundary condition, for k = 1, . . . ,Ml we have:

Fk(w, λ) = Bl

(︃ N∑︂
i=1

wjψ(αj · xi + βj)
)︃
− g
(︃ N∑︂

i=1
wjψ(αj · xi + βj)

)︃
= 0.

At this system of non-linear algebraic equations, here we apply Newton’s method (4.4).
Notice that the application of the method requires the explicit knowledge of the derivatives
of the functions ψ; in the RPNN case as described, we have explicit formulae for these
(see Eq. (2.94), (4.15)).

Remark 4.2.1. In our case, Newton’s method is applied to non-squared systems. When
the rank of the Jacobian is small, here we have chosen to solve the problem with the
use of Moore–Penrose pseudo inverse of∇wF computed by the SVD decomposition; as
discussed above, another choice would be QR-decomposition (4.6). This means that we
cut off all the eigenvectors correlated to small eigenvalues1, so:

∇wF = UΣV T , (∇wF )+ = V Σ+UT ,

1The usual algorithm implemented in Matlab is that any singular value less than a tolerance is treated as
zero: by default, this tolerance is set to max(size(A)) * eps(norm(A))
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whereU ∈ RM×M andV ∈ RN×N are the unitary matrices of left and right eigenvectors
respectively, and Σ ∈ RM×N is the diagonal matrix of singular values. Finally, we can
select q ≤ rank(∇F ) to get:

∇wF = UqΣqV
T

q , (∇wF )+ = VqΣ+
q U

T
q , (4.12)

where Uq ∈ RM×q and V ∈ RN×q and Σq ∈ Rq×q . Thus, the solution of Eq.(4.4) is
given by:

dw(n) = −VqΣ+
q U

T
q · F (w(n), λ).

Branches of solutions past turning points can be traced by solving the augmented, with
the pseudo-arc-length condition, problem given by Eq.(4.7). In particular in (4.7), for
the RPNN framework (2.40), the term ∇wN becomes:

∇wN = RT (ũ(w)−2 − ũ(w)−1)
ds

,

where R is the collocation matrix defined in Eq. (2.55).

Remark 4.2.2. The three numerical methods (FD, FEM and RPNN) are compared w.r.t.
the dimension of the Jacobian matrix J , that in the case of FD and FEM is square and
related to the number N of nodes, i.e., J ∈ RN×N , and in the case RPNN is rectangular
and related to both the number M of collocation nodes and the number N of neurons,
i.e., J ∈ RM×N . Actually, N is the parameter related to the computational cost, i.e., the
inversion of the J for FD and FEM is done by LU factorization that has a computational
cost of O(N3). For the RPNN case, which leads to an under-determined system, the
computational cost is related to the inversion of the matrix JTJ ∈ RN×N , that therefore
has the same leading computational cost O(N3). Moreover, if the solution is computed
with the Moore–Penrose pseudo–inverse, the computational cost is based on SVD, which
has a computational cost of O(MN2 +M2N). Finally, we make explicit that in all the
rest of the paper, we use RPNN networks with a number of M of collocation points that
is half the number N of neurons in the hidden layer. In general, we pinpoint that by
increasing the number M to be 2N

3 , 3N
4 , etc..2 one gets even better results.

Thus, in the case of collocation methods, such as FD and the proposed ML scheme
(RPNNs), most of the computational cost is related to the solution of the linear system. In
the case of isoparametric Galerkin methods, there is an extra computational cost related
with the computation of the quantities of interest, such as the derivatives of the shape
functions and the computation of the integrals.

2The case M = N can be solved only by the use of a (Moore-Penrose) pseudo-inverse (4.12), because the
invertibility of the Jacobian of the nonlinear PDE operator cannot be guaranteed in advance.
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RPNN with sigmoid functions. Here, we selected two different activation functions,
sigmoid functions (SF) and radial basis functions (RBF). For the SF case, we select the
logistic sigmoid, that is defined by

ψj(x) ≡ σj(x) = 1
1 + exp(−αj · x− βj) . (4.13)

the selection of the relative selection of the internal weights and biases have been already
introduced in Eq. (2.96) for the 1d case and (2.98) for the 2d case.

In the next section, we repeat the analysis, specifically also for the RBF approach.

RPNN with radial basis functions. Here, for the RBF case, we select the Gaussian
kernel, that is defined as follows:

ψj(x) ≡ φj(x) = exp(−ε2
j ||x− cj ||22) = exp

(︃
−ε2

j

d∑︂
k=1

(x(k)− cj,k)2
)︃
, (4.14)

where cj ∈ Rd is the center point and εj ∈ R is the inverse of the standard deviation.
For such functions, we have:

∂

∂x(k)φj(x) = −2ε2
jexp(−ε2

jr
2
j )(x(k)− cj,k),

∂2

∂x(k)2φj(x) = exp(−ε2
jr

2
j )
(︁
− 2ε2

j + 4ε4
j (x(k)− cj,k)2)︁, (4.15)

where rj = ||x − cj ||2. In all the directions, the Gaussian kernel is a classical bell
function such that:

lim
∥x−cj∥→+∞

ϕj(x) = 0, ϕj(cj) = 1.

Moreover, the parameter ε2
j controls the steepness of the amplitude of the bell function:

if εj → +∞, then ϕj approximates the Dirac function, while if ε→ 0, ϕj approximates
a constant function. Thus, in the case of RBFs, one can relate the role of εj to the role
of αj,k for the case of SF. For RBFs, it is well known that the center has to be chosen
as a point internal to the domain and also more preferable to be exactly a grid point,
while the steepness parameter ε is usually chosen to be the same for each function. Here,
since we are embedding RBFs in the RPNN framework, we take randomly the steepness
parameter εj in order to have more variability in the functional space, while for the
centers cj we select equally-spaced points in the domain. Thus, as for the SF case, we
set the parameters ε2

j random uniformly distributed as:

ε2
j ∼ U

(︃
1
|I|
,
N + 65
15|I|

)︃
,

where N denotes the number of neurons in the hidden layer and |I| = b − a is the
domain length. Besides, note that for the RBF case, it is trivial to extend the above
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into the multidimensional case, since φj is already expressed w.r.t. the center. For the
two-dimensional case, we do the same reasoning as for the SF taking:

ε2
j ∼ U

(︃
1

2|I| ,
√
N + 50
30|I|

)︃
.

4.3 Numerical Analysis Results: the Case Studies
The efficiency of the proposed numerical scheme is demonstrated through two bench-
mark nonlinear PDEs, namely (a) the one dimensional nonlinear Burgers’ equation with
Dirichlet boundary conditions and also mixed boundary conditions, and, (b) the one- and
two-dimensional Liouville–Bratu–Gelfand problem. These problems have been widely
studied as have been used to model and analyze the behavior of many physical and chem-
ical systems (see, e.g., [227, 228, 221, 222, 229, 230]).
All computations were made with a CPU Intel® Core™ i7-10750H CPU @2.60GHz,
RAM 16.0 GB using MATLAB R2020b.
In this section, we present some known properties of the proposed problems and provide
details on their numerical solution with FD, FEM and the proposed ML scheme (RPNN)
with both logistic and Gaussian RBF transfer functions.

4.3.1 The Nonlinear Viscous Burgers Equation
Here, we consider the one-dimensional steady state viscous Burgers problem:

ν
∂2u

∂x2 − u
∂u

∂x
= 0 (4.16)

in the unit interval [0, 1], where ν > 0 denotes the viscosity. For our analysis, we
considered two different sets of boundary conditions:

• Dirichlet boundary conditions

u(0) = γ , u(1) = 0 , γ > 0 ; (4.17)

• Mixed boundary conditions: Neumann condition on the left boundary and zero
Dirichlet on the right boundary:

∂u

∂x
(0) = −ϑ , u(1) = 0 , ϑ > 0 . (4.18)

The two sets of boundary conditions result in different behaviors (see [227, 231]). We
summarize in the next two lemmas some main results.

Lemma 4.3.1 (Dirichlet case). Consider Eq. (4.16) with boundary conditions given by
(4.17). Moreover, take (notice that γ −−−→

ν→0
1):

γ = 2
1 + exp( −1

ν )
− 1.
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Then, the problem (4.16)-(4.17) has a unique solution given by:

u(x) = 2
1 + exp( x−1

ν )
− 1 . (4.19)

We will use this test problem because the solution has a boundary layer.

Lemma 4.3.2 (Mixed case). Consider Eq.(4.16) with boundary conditions given by
(4.18). The solution of the problem can be written as [227] :

u(x) =
√

2c tanh
(︃√

2c
2ν (1− x)

)︃
, (4.20)

where c is a constant value which can be determined by the imposed Neumann condition.
Then, for ϑ sufficiently small, the viscous Burgers’ problem with mixed boundary con-
ditions admits two solutions:

(a) a stable lower solution such that ∀x ∈ (0, 1):

u(x) −−−→
ϑ→0

0, ∂u(x)
∂x

−−−→
ϑ→0

0,

(b) an unstable upper solution u(x) > 0 ∀x ∈ (0, 1) such that:

∂u(0)
∂x

−−−→
ϑ→0

0, ∂u(1)
∂x

−−−→
ϑ→0

−∞ ,

and
∀x ∈ (0, 1) , u(x) −−−→

ϑ→0
∞ .

Proof. The spatial derivative of (4.20) is given by:

∂u(x)
∂x

= − c
ν

sech2
(︃√

2c
2ν (1− x)

)︃
. (4.21)

(a) When c → 0 then from Eq.(4.20), we get asymptotically the zero solution, i.e.,
u(x) → 0, ∀x ∈ (0, 1) and from Eq.(4.21), we get ∂u(x)

∂x → 0, ∀x ∈ (0, 1). At x = 1,
the Dirichlet boundary condition u(1) = 0 is satisfied exactly (see Eq.(4.20)), while at
the left boundary x = 0 the Neumann boundary condition is also satisfied as due to
Eq.(4.21) and our assumption (ϑ→ 0): ∂u(0)

∂x = −ϑ→ 0, when c→ 0.
(b) When ∂u(1)

∂x → −∞, then (4.21) is satisfied ∀x ∈ (0, 1) when c → ∞. In that
case, at x = 0, the Neumann boundary condition is satisfied as due to Eq.(4.21) is easy
to prove that ∂u(0)

∂x → 0.
Indeed, from Eq.(4.21):

lim
c→∞

∂u(x)
∂x

= − lim
c→∞

ν

exp
√

2c
ν

= 0. (4.22)

Finally Eq.(4.20) gives u(x)→∞, ∀x ∈ (0, 1).
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To better understand the behavior of the unstable solution w.r.t. the left boundary
condition, we can prove the following.

Corollary 4.3.1. Consider Eq.(4.16) with boundary conditions given by (4.18). For the
non-zero solution, when ϑ = ϵ→ 0 the solution at x = 0 goes to infinity with values:

u(0) = ν log
(︂ν
ϵ

)︂
tanh

(︃
1
2 log

(︂ν
ϵ

)︂)︃
. (4.23)

Proof. By setting the value of ϑ in the Neumann boundary condition to be a very small
number, i.e., ϑ = ϵ ≪ 1, then from Eq.(4.22), we get that the slope of the analytical
solution given by Eq.(4.21) is equal to ϵ, when

c = 1
2ν

2 log2
(︂ν
ϵ

)︂
. (4.24)

Plugging the above into the analytical solution, given by Eq.(4.20), we get Eq.(4.23).

The above findings imply also the existence of a limit point bifurcation w.r.t. ϑ that
depends also on the viscosity. For example, as shown in [227], for ϑ > 0 and ν = 1/10,
there are two equilibria arising due to a turning point at ϑ∗ = 0.087845767978.

Numerical Solution of the Burgers’ equation with Finite Differences and Finite Ele-
ments

The discretization of the one-dimensional viscous Burgers’ problem in N points with
second-order central FD in the unit interval 0 ≤ x ≤ 1 leads to the following system of
N − 2 algebraic equations ∀xj = (j − 1)h, j = 2, . . . N − 1, h = 1

N−1 :

Fj(u) = ν

h2 (uj+1 − 2uj + uj−1)− uj
uj+1 − uj−1

2h = 0 .

At the boundaries x1 = 0, xN = 1, we have u1 = γ, uN = 0, respectively for
the Dirichlet boundary conditions (4.17) and u1 = (2hϑ + 4u2 − u3)/3, uN = 0,
respectively for the mixed boundary conditions (4.18).

The above N − 2 nonlinear algebraic equations are the residual equations (4.3) that
are solved iteratively using Newton’s method (4.4). The Jacobian (4.5) is now tridiagonal:
at each i-th iteration, the non-null elements are given by:

∂Fj

∂uj−1
= ν

h2 + uj

2h ; ∂Fj

∂uj
= −ν 2

h2 −
uj+1 − uj−1

2h ; ∂Fj

∂uj+1
= ν

h2 −
uj

2 .

The Galerkin residuals (4.11) in the case of the one-dimensional Burgers equation read:

Rk =
∫︂ 1

0

(︃
ν
∂2u(x)
∂x2 − u∂u(x)

∂x

)︃
ϕk(x)dx. (4.25)

96



Chapter 4. Solution of the Forward Problems I: bifurcations of nonlinear stationary PDEs

By inserting the numerical solution (4.10) into Eq.(4.25) and by applying the Green’s
formula for integration, we get:

Rk =νϕk(x)du
dx

⃓⃓⃓1
0
− ν

N∑︂
j=1

uj

∫︂ 1

0

dϕj(x)
dx

dϕk(x)
dx

dx

−
∫︂ 1

0

N∑︂
j=1

ujϕj(x)
N∑︂

j=1
uj
dϕj(x)
dx

ϕk(x)dx.

(4.26)

At the above residuals, we have to impose the boundary conditions. If Dirichlet boundary
conditions (4.17) are imposed, Eq. (4.26) becomes:

Rk =− ν
N∑︂

j=1
uj

∫︂ 1

0

dϕj(x)
dx

dϕk(x)
dx

dx

−
∫︂ 1

0

N∑︂
j=1

ujϕj(x)
N∑︂

j=1
uj
dϕj(x)
dx

ϕk(x)dx.

(4.27)

In the case of the mixed boundary conditions (4.18), Eq.(4.26) becomes:

Rk =νϑϕk(0)− ν
N∑︂

j=1
uj

∫︂ 1

0

dϕj(x)
dx

dϕk(x)
dx

dx

−
∫︂ 1

0

N∑︂
j=1

ujϕj(x)
N∑︂

j=1
uj
dϕj(x)
dx

ϕk(x)dx.

(4.28)

In this paper, we use a P 2 FEM space, thus quadratic basis functions using an affine
element mapping in the interval [0, 1]d. For the computation of the integrals, we used
the Gauss quadrature numerical scheme: for the one-dimensional case, we used the
three-points Gaussian rule:{︄(︄

1
2 −

√︃
3
20 ,

5
18

)︄
,

(︃
0.5, 8

18

)︃
,

(︄
1
2 +

√︃
3
20 ,

5
18

)︄}︄
.

When writing Newton’s method (4.4), the elements of the Jacobian matrix for both (4.27)
and (4.28) are given by:

∂Rk

∂uj
= −ν

∫︂ 1

0

dϕj(x)
dx

dϕk(x)
dx

dx− 2
∫︂ 1

0

N∑︂
j=1

ujϕj(x)dϕj(x)
dx

ϕk(x)dx. (4.29)

Finally, with all the above, the Newton’s method (4.4) involves the iterative solution of a
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linear system. For the Dirichlet problem this becomes:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 . . . 0
∂R2
∂u1

∂R2
∂u2

. . . ∂R2
∂uj

. . . ∂R2
∂uN

...
...

. . .
...

. . .
...

∂Rk

∂u1
∂Rk

∂u2
. . . ∂Rk

∂uj
. . . ∂Rk

∂uN

...
...

. . .
...

. . .
...

0 0 . . . 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⃓⃓
u(n)

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

du
(n)
1

du
(n)
2
...

du
(n)
j
...

du
(n)
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
R2
...
Rk

...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦⃓⃓
u(n)

, (4.30)

while for the problem with the mixed boundary conditions, at each iteration, we need to
solve the following system:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂R1
∂u1

∂R1
∂u2

. . . ∂R1
∂uj . . . ∂R1

∂uN
∂R2
∂u1

∂R2
∂u2

. . . ∂R2
∂uj

. . . ∂R2
∂uN

...
...

. . .
...

. . .
...

∂Rk

∂u1
∂Rk

∂u2
. . . ∂Rk

∂uj
. . . ∂Rk

∂uN

...
...

. . .
...

. . .
...

0 0 . . . 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⃓⃓
u(n)

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

du
(n)
1

du
(n)
2
...

du
(n)
j
...

du
(n)
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1
R2
...
Rk

...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦⃓⃓
u(n)

. (4.31)

Numerical Solution of the Burgers’ equation with RPNN Collocation

Collocating the RPNN network function for the one-dimensional Burgers equation leads
to the following nonlinear algebraic system for i = 2, . . . ,M − 1:

Fi(w, ν) = ν

N∑︂
j=1

wj
d2ψj(xi)
dx2 −

(︃ N∑︂
j=1

wjψj(xi)
)︃(︃ N∑︂

j=1
wj
dψj(xi)
dx

)︃
= 0 . (4.32)

Then, the imposition of the boundary conditions (4.17) gives:

F1(w, ν) =
N∑︂

j=1
wjψj(0)− γ = 0, FM (w, ν) =

N∑︂
j=1

wjψj(1) = 0 , (4.33)

while boundary conditions (4.18) lead to:

F1(w, ν) =
N∑︂

j=1
wj
dψj(0)
dx

+ ϑ = 0, FM (w, ν) =
N∑︂

j=1
wjψj(1) = 0 . (4.34)

These equations are the residual equations (4.3) that we solve by Newton’s method (4.4).
The elements of the Jacobian matrix ∇wF are given by:

∂Fi

∂wj
= ν

d2ψj(xi)
dx2 − ψj(xi)

(︃ N∑︂
j=1

wj
dψj(xi)
dx

)︃
−
(︃ N∑︂

j=1
wjψj(xi)

)︃
dψj(xi)
dx

.
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For i = 2, . . . ,M − 1 and due to the Dirichlet boundary conditions (4.33), we have:

∂F1

∂wj
(w, λ) = ψj(0) ∂FM

∂wj
(w, λ) = ψj(1).

On the other hand, due to the mixed boundary conditions given by (4.34), we get:

∂F1

∂wj
(w, λ) = dψj(0)

dx

∂FM

∂wj
(w, λ) = ψj(1).

At this point, the application of Newton’s method (4.4) using the exact computation of
the derivatives of the basis functions is straightforward (see (2.94) and (4.15)).

Numerical Results

In all the computations with FD, FEM and the proposed ML scheme (RPNN), the
convergence criterion for Newton’s iterations was the L2 norm3 of the relative error
between the solutions resulting from successive iterations; the convergence tolerance
was set to 10−6. In fact, for all methods, Newton’s method converged quadratically also
up to the order of 10−10, when the bifurcation parameter was not close to zero where
the solution of both Burgers with mixed boundary conditions and Bratu problems goes
asymptotically to infinity. The exact solutions that are available for the one-dimensional
Burgers and Bratu problems are derived using Newton’s method, with a convergence
tolerance of 10−12.

RPNN SF RPNN RBF
N 5% mean 95% 5% mean 95%
80 2.73E−03 4.70E−03 4.38E−03 2.31E−03 2.67E−03 3.16E−03
160 8.46E−03 9.97E−03 1.12E−02 7.16E−03 8.20E−03 9.08E−03
320 3.72E−02 4.23E−02 4.60E−02 3.52E−02 3.89E−02 4.28E−02
640 1.60E−01 1.67E−01 1.75E−01 1.56E−01 1.69E−01 1.97E−01

FD FEM
N 5% mean 95% 5% mean 95%
80 1.72E−04 3.37E−04 3.48E−04 2.33E−02 2.49E−02 2.76E−02
160 4.31E−04 4.55E−04 5.26E−04 5.68E−02 6.39E−02 6.95E−02
320 1.29E−03 1.33E−03 1.44E−03 1.22E−01 1.24E−01 1.31E−01
640 1.05E−02 1.10E−02 1.16E−02 3.34E−01 3.40E−01 3.55E−01

Table 4.1: Execution times (s) for the Burgers Eq. (4.16) with Dirichlet boundary
conditions (4.17) and ν = 0.1.

First, we present the numerical results for the Burgers’ Eq. (4.16) with Dirichlet
boundary conditions (4.17). Recall that for this case, the exact solution is available (see
Eq. (4.19)).

3The relative error is the L2–norm of the difference between two successive solutions ||u(w)−2 −
u(w)−1||2. In particular, for the RPNN framework, it is given by ||RT · (w−2 − w−1)||2, where R is the
collocation matrix defined in Eq. (2.55).

99



4.3. Numerical Analysis Results: the Case Studies

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RPNN SF

RPNN RBF

FD

FEM

Exact

101 102 103

log10 N

10-20

10-15

10-10

10-5

100

lo
g

1
0

 e
rr

o
r

RPNN SF L2 error

RPNN RBF L2 error

FD L2 error

FEM L2 error

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
RPNN SF

RPNN RBF

FD

FEM

Exact

(c)

101 102 103

log10 N

10-10

100

lo
g

1
0

 e
rr

o
r

RPNN SF L2 error

RPNN RBF L2 error

FD L2 error

FEM L2 error

(d)

Figure 4.1: Numerical solution and accuracy of the FD, FEM and the proposed ML
scheme (RPNN) for the one-dimensional viscous Burgers’ problem with Dirichlet bound-
ary conditions (4.16), (4.17), (a,b) with viscosity ν = 0.1: (a) Solutions for a fixed
problem size N = 40; (b) L2–norm of differences w.r.t. the exact solution (4.19) for
various problem sizes. (c,d) with viscosity ν = 0.007: (c) Solutions for a fixed problem
size N = 40; (d) L2–norm errors w.r.t. the exact solution for various problem sizes.

For our illustrations, we have selected two different values for the viscosity, namely
ν = 0.1 and ν = 0.007. Results were obtained with Newton’s iterations starting from an
initial guess that is a linear segment that satisfies the boundary conditions.

Figure 4.1 shows the corresponding computed solutions for a fixed size N = 40, as
well as the relative errors w.r.t. the exact solution. As it is shown, the proposed ML
scheme outperforms both the FD and FEM schemes for medium to large sizes of the
grid; from low to medium sizes of the grid, all methods perform equivalently.

However, as shown in Figure 4.1(c), for ν = 0.007, and the particular choice of
the size (N = 40), the FD scheme fails to approximate sufficiently the steep-gradient
appearing at the right boundary. Table 4.1, summarizes the execution times of the four
methods (RPNN SF, RPNN RBF, FD and FEM), when applied for the solution of the
Burgers’ Eq. (4.16) with Dirichlet conditions (4.17) and ν = 0.1 for various sizes of the
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Figure 4.2: (a) One-dimensional Burgers equation (4.16) with mixed boundary conditions
(4.18). Bifurcation diagram w.r.t. the Neumann boundary value θ as obtained for
ν = 1/10, with FD, FEM and RPNN schemes with a fixed problem size N = 400; (b)
Zoom near the turning point.

N FD FEM RPNN SF RPNN RBF
20 -3.32E−04 -4.86E−09 2.75E−08 -4.37E−06
50 -5.35E−05 -7.67E−09 -2.06E−09 -2.14E−09
100 -1.34E−05 -2.16E−09 -9.84E−09 -9.85E−09
200 -3.34E−06 -5.93E−09 -9.62E−09 -9.61E−09
400 -8.35E−07 4.15E−09 9.38E−10 9.33E−10

Table 4.2: One-dimensional Burgers equation (4.16) with mixed boundary conditions
(4.18). Comparative results w.r.t. the error between the estimated value of the turning
point as obtained with FD, FEM and proposed ML scheme (RPNN) and the exact value
of the turning point at ϑ∗ = 0.087845767978 for ν = 1/10. The value of the turning
point was estimated by fitting a parabola around the four points with the largest λ values,
as obtained by the arc-length continuation.

grid.
The computations are performed 100 times, and we also provide the 5% and 95%

percentiles. For all practical means, the execution times obtained with RPNNs are
comparable with the ones obtained with FD and FEM (with the ones obtained with the
proposed ML scheme to be slightly faster that the ones obtained with FEM), while, as
seen, numerical approximation accuracy is better in the RPNNs case; the execution times
when using the FD are smaller but as shown the FD scheme fails to approximate solutions
with steep gradients while its numerical accuracy is generally lower when compared with
FEM and the proposed ML scheme.

Then, we considered the case of the non-homogeneous Neumann condition on the
left boundary (4.16)- (4.18); here, we have set ν = 1/10. In this case, the solution is not
unique and the resulting bifurcation diagram obtained with FD, FEM and the proposed
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N FD FEM RPNN SF RPNN RBF
20 -1.81E−01 2.05E−02 -6.55E−01 -6.14E−01
50 -2.66E−02 7.67E−04 -5.83E−01 -6.09E−01
100 -6.52E−03 1.58E−04 -2.00E−01 -1.05E−01
200 -1.61E−03 8.99E−05 -2.50E−06 -5.05E−06
400 -4.00E−04 6.28E−05 -3.47E−06 -9.52E−06

Table 4.3: One-dimensional Burgers equation (4.16) with mixed boundary conditions
(4.18). Comparative results w.r.t. the error between the computed solution (at x = 0)
with FD, FEM and proposed ML scheme (RPNN) (with both sigmoid and RBF) and the
exact solution u(0) = 1.798516682636303 (see Eq. (4.20)) for ϑ = 1e− 6 (the value of
the Neumann condition at the left boundary).

ML scheme (RPNN) is depicted in Fig.(4.2). In Table 4.2, we report the error between
the value of the bifurcation point as computed with FD, FEM and the proposed ML
scheme (RPNN) for various problem sizes N , w.r.t. the exact value of the bifurcation
point (occurring for the particular choice of viscosity at ϑ∗ = 0.087845767978). The
location of the bifurcation point for all numerical methods was estimated by fitting a
parabola around the four points (two on the lower and two on the upper branch) of the
largest values of λ, as obtained by the pseudo-arc-length continuation. As shown, the
proposed RPNN scheme performs equivalently to FEM for low to medium sizes of the
grid, thus outperforming FEM for medium to large grid sizes; both methods FEM and
the proposed ML scheme (RPNN) outperform FD for all sizes of the grid.

In this case, steep gradients arise at the right boundary related to the presence of the
upper unstable solution, as discussed in Lemma 4.3.2 and Corollary 4.3.1. In Table 3, we
report the error between the numerically computed and the exact analytically obtained
value (see Eq. (4.20)) at x = 0 when the value of boundary condition ϑ at the left
boundary is ϑ = 10−6. Again, as shown, near the left boundary, the proposed RPNN
scheme outperforms both FEM and FD for medium to larger sizes of the grid.

4.3.2 The one- and two-dimensional Liouville–Bratu–Gelfand Problem
The Liouville–Bratu–Gelfand model arises in many physical and chemical systems. It is
an elliptic PDE which in its general form is given by [228]:

∆u(x) + λeu(x) = 0 x ∈ Ω, (4.35)

with homogeneous Dirichlet conditions,

u(x) = 0 , x ∈ ∂Ω. (4.36)

The domain that we consider here is the Ω = [0, 1]d in Rd , d = 1, 2.
The one-dimensional problem admits an analytical solution given by [232]:

u(x) = 2 ln cosh θ
cosh θ(1− 2x) , where θ is such that cosh θ = 4θ√

2λ
. (4.37)
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It can be shown that when 0 < λ < λc, the problem admits two branches of solutions
that meet at λc ∼ 3.513830719, a limit point (saddle-node bifurcation) that marks the
onset of two branches of solutions with different stability, while beyond that point no
solutions exist.

For the two-dimensional problem, to the best of our knowledge, no such (as in the
one-dimensional case) exact analytical solution exist that is verified by the numerical
results that have been reported in the literature (e.g., [221, 229]), in which the authors
report the value of the turning at λc ∼ 6.808124.

Numerical Solution with Finite Differences and Finite Elements

The discretization of the one-dimensional problem in N points with central FD at the
unit interval 0 ≤ x ≤ 1 leads to the following system of N − 2 algebraic equations
∀xj = (j − 1)h, j = 2, . . . N − 1, h = 1

N−1 :

Fj(u) = 1
h2 (uj+1 − 2uj + uj−1) + λeuj = 0,

where, at the boundaries x1 = 0, xN = 1, we have u1 = uN = 0.
The solution of the aboveN − 2 nonlinear algebraic equations is obtained iteratively

using the Newton-Raphson method. The Jacobian is now tridiagonal; at each n-th
iteration, the elements at the main diagonal are given by ∂Fj

∂uj

(n)
= − 2

h2 + λeu
(n)
j

and the elements of the first diagonal above and the first diagonal below are given by
∂Fj+1

∂uj

(n)
= ∂Fj

∂uj+1

(n)
= 1

h2 , respectively.
The discretization of the two-dimensional Bratu problem inN×N points with central

FD on the square grid 0 ≤ x, y ≤ 1 with zero boundary conditions leads to the following
system of (N−2)× (N−2) algebraic equations ∀(xi = (i−1)h, yj = (j−1)h), i, j =
2, . . . N − 1, h = 1

N−1 :

Fi,j(u) = 1
h2 (ui+1,j + ui,j+1 − 4ui,j + ui,j−1 + ui−1,j) + λeui,j = 0.

The Jacobian is now a (N − 2)2 × (N − 2)2 block diagonal matrix of the form:

∇F = 1
h2

⎡⎢⎢⎢⎢⎢⎣
T2 I 0 0 . . . . . . 0
I T3 I 0 . . . . . . 0
0 I T4 I 0 . . . 0
...

...
. . . . . . . . . . . .

...
0 . . . . . . . . . . . . I TN−1

⎤⎥⎥⎥⎥⎥⎦ ,

where I is the (N − 2) × (N − 2) identity matrix and Ti is the (N − 2) × (N − 2)
tridiagonal matrix with non-null elements on the j-th row:

1 , −4 + h2λeui+j,i+j , 1
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Regarding the FEM solution, for the one-dimensional Bratu problem, Eq. (4.11)
gives:

Rk =
∫︂

Ω

(︃
∂2u

∂x2 + λeu(x)
)︃
ϕk(x)dx. (4.38)

By inserting Eq.(4.10) into Eq.(4.38) and by applying the Green’s formula for integration,
we get:

Rk = ϕk(x)du
dx

⃓⃓⃓1
0
−

N∑︂
j=1

uj

∫︂ 1

0

dϕj(x)
dx

dϕk(x)
dx

dx+ λ

∫︂ 1

0
e

∑︁N

j=1
ujϕj(x)

ϕk(x)dx

(4.39)
and because of the zero Dirichlet boundary conditions, Eq.(4.39) becomes:

Rk = −
N∑︂

j=1
uj

∫︂ 1

0

dϕj(x)
dx

dϕk(x)
dx

dx+ λ

∫︂ 1

0
e

∑︁N

j=1
ujϕj(x)

ϕk(x)dx.

The elements of the Jacobian matrix are given by:

∂Rk

∂uj
= −

∫︂ 1

0

dϕj(x)
dx

dϕk(x)
dx

dx+ λ

∫︂ 1

0
e

∑︁N

j=1
ujϕj(x)

ϕj(x)ϕk(x)dx (4.40)

Due to the Dirichlet boundary conditions, Eq.(4.40) becomes:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 . . . 0
∂R2
∂u1

∂R2
∂u2

. . . R2
∂uj

. . . R2
∂uN

...
...

. . .
...

. . .
...

∂Rk

∂u1
∂Rk

∂u2
. . . Rk

∂uj
. . . Rk

∂uN

...
...

. . .
...

. . .
...

0 0 . . . 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⃓⃓
u(n)

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

du
(n)
1

du
(n)
2
...

du
(n)
j
...

du
(n)
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
R2
...
Rk

...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦⃓⃓
u(n)

. (4.41)

For the two-dimensional Bratu problem, the residuals are given by:

Rk =
∫︂∫︂

Ω
(∂

2u(x, y)
∂x2 + ∂2u(x, y)

∂y2 + λeu(x,y))ϕk(x, y)dxdy.

By applying the Green’s formula for integration, we get:

Rk =
∮︂

∂Ω
∇u(x, y)dℓ−

∫︂∫︂
Ω
∇u(x, y)∇ϕk(x, y)dxdy

+
∫︂∫︂

Ω
λeu(x,y)ϕk(x, y)dxdy.

By inserting Eq.(4.10) and the zero Dirichlet boundary conditions, we get:

Rk = −
N∑︂

j=1
uj

∫︂∫︂
Ω
∇ϕj(x, y)∇ϕk(x, y)dxdy

+
∫︂∫︂

Ω
λe

∑︁N

j=1
ujϕj(x,y)

ϕk(x, y)dxdy.
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Thus, the elements of the Jacobian matrix for the two-dimensional Bratu problem are
given by:

∂Rk

∂uj
= −

∫︂∫︂
Ω
∇ϕj(x, y)∇ϕk(x, y)dxdy

+
∫︂∫︂

Ω
λe

∑︁N

j=1
ujϕj(x,y)

ϕj(x, y)ϕk(x, y)dxdy.

As before, for our computations we have used quadratic basis functions using an affine
element mapping in the domain [0, 1]2.

Numerical Solution with RPNN Collocation

Collocating the RPNN network function (2.40) in the 1D Bratu problem (4.35) leads to
the following system:

Fi(w, λ) =
N∑︂

j=1
wj
d2ψj(xi)
dx2 + λexp

(︃ N∑︂
j=1

wjψj(xi)
)︃

= 0, i = 2, . . . ,M − 1,

with boundary conditions:

F1(w, λ) =
N∑︂

j=1
wjψj(0) = 0, FM (w, λ) =

N∑︂
j=1

wjψj(1) = 0.

Thus, the elements of the Jacobian matrix ∇wF are given by:

∂Fi

∂wj
= d2ψj(xi)

dx2 + λψj(xi)exp
(︃ N∑︂

j=1
wjψj(xi)

)︃
, i = 2, . . . ,M − 1,

and
∂F1

∂wj
(w, λ) = ψj(0) ∂FM

∂wj
(w, λ) = ψj(1).

The application of Newton’s method (4.4) is straightforward, using the exact computation
of derivatives of the basis functions (see (2.94) and (4.15)).

For the two-dimensional Bratu problem (4.35), we have:

Fi(w, λ) =
N∑︂

j=1
wj
∂2ψj(xi, yi)

∂x2 +
N∑︂

j=1
wj
∂2ψj(xi, yi)

∂y2

+ λ exp
(︃ N∑︂

j=1
wjψj(xi, yi)

)︃
= 0, i = 1, . . . ,MΩ

with boundary conditions:
∂Fi

∂wj
= ∂2ψj(xi, yi)

∂x2 + ∂2ψj(xi, yi)
∂y2

+ λψj(xi, yi) exp
(︃ N∑︂

j=1
wjψj(xi, yi)

)︃
, i = 1, . . . ,MΩ
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and
∂Fk

∂wj
(w, λ) = ψj(xk, yk) = 0, k = 1, . . . ,M1 .

Also in this case, with the above computations, the application of Newton’s method (4.4)
is straightforward.

Numerical results for the one-dimensional problem

First, we show the numerical results for the one-dimensional Liouville–Bratu–Gelfand
equation (4.35) with homogeneous Dirichlet boundary conditions (4.36).

Recall that an exact solution, although in implicit form, is available in this case (see
Eq. (4.37)); thus, as discussed, the exact solutions are derived using Newton’s method
with a convergence tolerance of 10−12. Figure 4.3 depicts the comparative results
between the exact, FD, FEM and RPNN solutions on the upper-branch as obtained by
applying Newton’s iterations, for two values of the parameter λ and a fixed N = 40,
namely for λ = 3 close to the turning point (occurring at λc ∼ 3.513830719) and for
λ = 0.2. For our illustrations, we have set as initial guess u0(x) a parabola that satisfies
the homogeneous boundary conditions, namely:

u0(x) = 4l0(x− x2),

with a fixed L∞–norm ||u||∞ = l0 close to the one obtained from the exact solution.
In particular, for λ = 3, we used as initial guess a parabola with l0 = 2.2; in all cases

Newton’s iterations converge to the correct unstable upper-branch solution. For λ = 0.2,
we used as initial guess a parabola with l0 = 6.4 (the exact solution has l0 ∼ 6.5); again
in all cases, Newton’s iterations converged to the correct unstable upper-branch solution.
In Table 4, we compare the execution times of the four methods when applied to the
solution of the Bratu Eq. (4.35) with Dirichlet boundary condition (4.36) and λ = 1.
Computations are performed 100 time, and we also provide the 5% and 95% percentiles.
Again, for all practical means, the execution times obtained with the proposed ML scheme
are comparable with the ones obtained with FD and FEM (note that the execution times
obtained with the proposed ML scheme are slightly smaller that the ones obtained with
FEM), while, as seen, numerical approximation accuracy is better in the RPNNs case;
the execution times when using the FD are slightly smaller but as shown the FD scheme
results to a lower numerical accuracy compared with FEM and the proposed ML scheme
(RPNN).

Bifurcation diagram and numerical accuracy

In this section, we report the numerical results obtained by the numerical bifurcation
analysis of the one-dimensional Bratu problem (4.35).

Figure 4.4 shows the constructed bifurcation diagram w.r.t. the parameter λ and in
Table 5, we report the accuracy of the computed value as obtained with FD, FEM and
the proposed ML scheme (RPNN), versus the exact value of the turning point.
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Figure 4.3: Numerical solutions and accuracy of the FD, FEM and the proposed ML
scheme (RPNN) for the one-dimensional Bratu problem (4.35). (a) Computed solutions
at the upper-branch unstable solution at λ = 3 for a fixed problem size N = 40. (b)
L2–norm of differences w.r.t. the exact unstable solution (4.37) at λ = 3 for various
values of N . (c) Computed solutions at the upper-branch unstable solution at λ = 0.2
with a fixed problem size N = 40. (d) L2–norm of differences w.r.t. the exact unstable
solution (4.37) at λ = 0.2 for various values of N . The initial guess of the solutions
was a parabola satisfying the homogeneous boundary conditions with a fixed L∞–norm
||u||∞ = l0 close to the one resulting from the exact solution.

As shown, our proposed ML scheme provides a bigger numerical accuracy for the
value of the turning point for medium to large sizes of the grid, and equivalent results
(RPNN with SF) to FEM, both outperforming the FD scheme.

In Figures 4.5 and 4.6, we depict the contour plots of theL∞–norms of the differences
between the computed solutions by FD, FEM and the proposed ML scheme (RPNN) and
the exact solutions for the lower- (4.5) and upper-branch (4.6), respectively w.r.t. N and
λ.

As it is shown, the proposed ML schemes outperform both FD and FEM methods
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RPNN SF RPNN RBF
N 5% mean 95% 5% mean 95%
80 7.16E−03 8.14E−03 9.27E−03 2.07E−03 2.31E−03 2.61E−03
160 3.81E−02 4.23E−02 4.93E−02 3.53E−03 4.31E−03 4.96E−03
320 1.09E−02 1.16E−02 1.30E−02 7.12E−03 7.96E−03 8.57E−03
640 3.19E−02 3.38E−02 3.58E−02 2.81E−02 3.01E−02 3.17E−02

FD FEM
N 5% mean 95% 5% mean 95%
80 1.93E−04 2.60E−04 2.65E−04 2.58E−03 2.88E−03 3.03E−03
160 5.72E−04 7.01E−04 8.24E−04 5.76E−03 6.32E−03 6.89E−03
320 1.59E−03 1.86E−03 2.08E−03 1.15E−02 1.17E−02 1.20E−02
640 8.77E−03 9.07E−03 9.49E−03 3.00E−02 3.11E−02 3.21E−02

Table 4.4: Execution times (s) for the Bratu Eq. (4.35) with Dirichlet boundary condition
(4.36) and λ = 1.

N FD FEM RPNN SF RPNN RBF
20 -4.57E−03 3.44E−05 8.76E−05 3.00E−02
50 -7.31E−04 8.44E−07 2.98E−07 6.61E−05
100 -1.83E−04 5.06E−08 -3.71E−08 6.13E−08
200 -4.57E−05 2.36E−08 -4.55E−09 -2.68E−09
400 -1.14E−05 1.36E−08 2.02E−09 2.03E−09

Table 4.5: One-dimensional Bratu problem (4.35). Accuracy of FD, FEM and the
proposed ML scheme (RPNN) in the approximation of the value of the turning point
w.r.t. the exact value λ = 3.513830719125162. Values express the difference with the
computed turning point and the exact one. The value of the turning point was estimated
by fitting a parabola around the four points with the largest λ values as obtained with
arc-length continuation.

for medium to large problem sizes N , and provide equivalent results with FEM for
low to medium problem sizes, thus both (FEM and the proposed ML scheme (RPNN))
outperforming the FD scheme.

Numerical results for the two-dimensional problem

For the two-dimensional problem (4.35)-(4.36), no exact analytical solution is available.

Thus, for comparing the numerical accuracy of the FD, FEM and the proposed ML
scheme (RPNN), we considered the value of the bifurcation point that has been reported
in key works as discussed in Section 4.3.2. Figure 4.7 depicts the computed bifurcation
diagram as computed via pseudo-arc-length continuation (see section 4.2). Table 6,
summarizes the computed values of the turning point as estimated with the FD, FEM
and RPNN schemes for various sizes N of the grid.
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Figure 4.4: (a) Bifurcation diagram for the one-dimensional Bratu problem (4.35), with
a fixed problem size N = 400. (b) Zoom near the turning point.

N Grid FD FEM RPNN SF RPNN RBF
64 8×8 6.783434 7.083742 6.845015 7.207203
100 10×10 6.792626 6.984260 6.723902 6.930798
196 14×14 6.800361 6.900313 6.855055 6.882435
400 20×20 6.804392 6.856401 6.799440 6.829754
784 28×28 6.806235 6.835771 6.801689 6.806149
1600 40×40 6.807220 6.824770 6.806899 6.804600

Table 4.6: Turning point estimation of the two-dimensional Bratu problem. The value
that has been reported in the literature in key works (see, e.g., [221]) is λ∗ = 6.808124.
The value of the turning point was estimated by fitting a parabola around the four points
with the largest λ values as obtained by the arc-length continuation.

Remark 4.3.1 (The Gelfand-Bratu model). The Liouville–Bratu–Gelfand Eq. (4.35)
in a unitary ball B ⊂ Rd with homogeneous Dirichlet boundary conditions is usually
refereed as Gelfand-Bratu model.

Such equation posses radial solutionsu(r) of the one-dimensional non-linear boundary-
value problem [233]:

{︄
u′′(r) + d− 1

r
u′(r) + λeu(r) = 0 0 < r < 1

u(1) = u′(0) = 0
(4.42)

In the case d = 2, this equation gives multiple solutions if λ < λc = 2. For example,
in [230], the authors have used Mathematica software to give analytical solutions at
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(a) (b)

(c) (d)

Figure 4.5: One-dimensional Bratu problem (4.35). Contour plots of the L∞–norms
of the differences between the computed and exact (4.37) solutions for the lower stable
branch: (a) FD, (b) FEM, (c) RPNN with logistic SF (4.13), (d) RPNN with Gaussian
RBF (4.14).

various values of λ; for our tests we consider:

λ = 1
2 → u(r) = log

(︄
16
(︁
7 + 4

√
3
)︁(︁

7 + 4
√

3 + r2
)︁2

)︄

λ = 1 → u(r) = log
(︄

8
(︁
3 + 2

√
2
)︁(︁

3 + 2
√

2 + r2
)︁2

)︄
.

(4.43)

Figure 4.8 depicts the numerical accuracy of the proposed ML (RPNN) collocation
scheme w.r.t. the exact solutions for two values of λ, namely for λ = 1/2 and for λ = 1.
Because no meshing procedure is involved, and because the collocation equation seeks
no other point, the implementation of the Newton’s method is straightforward when
changing the geometry of the domain.
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(a) (b)

(c) (d)

Figure 4.6: One-dimensional Bratu problem (4.35). Contour plots of the L∞–norms of
the differences between the computed and exact (4.37) solutions for the upper unstable
branch: (a) FD, (b) FEM, (c) RPNN with logistic SF (4.13), (d) RPNN with Gaussian
RBF (4.14).

4.4 Discussion

We proposed an ML numerical method based on RPNNs and collocation for the approx-
imation of steady-state solutions of non-linear PDEs. The proposed numerical scheme
takes advantage of the property of the RPNNs as universal function approximators, by-
passing the need of the computational very expensive - and most-of-the times without
any guarantee for convergence - of the training phase of other types of ML approaches,
such as single or multilayer ANNs and Deep-learning networks. The base of the ap-
proximation subspace on which a solution of the PDE is sought are the randomized
transfer functions of the hidden layer which are weighted by the only unknown parame-
ters, that is the weights of the hidden to output layer. Here, we address a new numerical
scheme based on RPNNs that can be used to solve steady state problems of non-linear
PDEs, and by bridging them with numerical continuation methods, we show how one
can exploit the arsenal of numerical bifurcation theory to trace branches of solutions past
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Figure 4.7: (a) Computed bifurcation diagram for the two-dimensional Bratu problem
(4.35), with a grid of 40× 40 points. b) Zoom near the turning point.
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Figure 4.8: Numerical accuracy of RPNNs for the radial two-dimensional Gelfand-Bratu
problem (4.42). L2–norm of differences of the analytical solutions (4.43) w.r.t. the
number of neurons N in RPNNs with both logistic SF (4.13) and Gaussian RBF (4.14):
(a) λ = 1/2, (b) λ = 1.

turning points. For our demonstrations, we considered two celebrated classes of non-
linear PDEs whose solutions bifurcate as parameter values change: the one-dimensional
viscous Burgers equation (a fundamental representative of advection-diffusion PDEs)
and the one- and two-dimensional Liouville–Bratu–Gelfand equation (a fundamental
representative of reaction-diffusion PDEs). By coupling the proposed numerical scheme
with Newton-Raphson iterations and the “pseudo" arc-length continuation method, we
constructed the corresponding bifurcation diagrams past turning points. The efficiency
of the proposed numerical ML collocation method was compared against two of the
most established numerical solution methods, namely central FD and Galerkin FEM.
By doing so, we showed that (for the same problem size) the proposed ML approach
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outperforms FD and FEM schemes for relatively medium to large sizes of the grid,
both w.r.t. the accuracy of the computed solutions for a wide range of the bifurcation
parameter values and the approximation accuracy of the turning points. Thus, we show
that the computational times of the proposed ML method are comparable with the ones
obtained with the other two schemes (actually the computational times obtained with the
proposed method are slightly smaller than the ones obtained with FEM; the FD scheme
provides slightly smaller times but fails to approximate solutions with steep gradients
and in general results to poorer numerical approximations). Hence, the proposed method
arises as an alternative and powerful new numerical technique for the approximation of
steady-state solutions of non-linear PDEs. Furthermore, its implementation is far sim-
pler than the implementation of FEM, thus providing equivalent or even better numerical
accuracy, and in all cases is shown to outperform the simple FD scheme, which fails to
approximate steep gradients as here arise near the boundaries. Of course there are many
open problems linked to the implementation of the proposed numerical method that ask
for further and deeper investigation, such as the theoretical investigation of the impact of
the type of transfer functions and the probability distribution of their parameter values
functions to the approximation of the solutions. Further directions could be towards the
extension of the method for the solution of time-dependent non-linear PDEs as well as
the solution of inverse-problems in PDEs.
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5 Solution of the Forward
Problems II: stiff ODEs and
index-1 DAEs

In this chapter, we address the solution of time-dependent forward problems, focusing
on the challenges posed by stiff ODEs and index-1 DAEs. We introduce a novel PINN
approach using RPNNs with RBF activations. Our method incorporates elements from
numerical analysis, including a time-adaptive scheme and continuation-based weight
initialization across intervals, and optimizes the sampling bounds of weight distributions.
Six benchmark problems are presented to illustrate the effectiveness of this approach in
handling stiffness and high-dimensional dynamics in complex systems.

5.1 Description of the problem
Here, we consider initial-value problems (IVPs) of ODEs and index-1 DAEs that may
also arise from the spatial discretization of PDEs using for example FD, FEM and spectral
methods. In particular, we consider IVPs in the linear implicit form of:

M
du(t)
dt

= f(t,u(t)), u(0) = z. (5.1)

u ∈ Rm denotes the set of the states {u1, u2, . . . , ui, . . . , um}, M ∈ Rm×m is the
so-called mass matrix with elements Mij , f : D ⊆ R×Rm → Rm denotes a Lipschitz
continuous multivariate function, with components fi(t, u1, u2, . . . , um) defined in a
closed domain D, and z ∈ Rm are the initial conditions. When M = I , the system
reduces to the canonical form. The above formulation includes problems of DAEs when
M is a singular matrix, including semi-explicit DAEs in the form [104]:

du(t)
dt

= f(t,u(t),v(t)), u(0) = z,

0 = g(t,u(t),v(t)),
(5.2)

where now f : R × Rm−l × Rl → Rm−l), g : R × Rm−l × Rl → Rl and we
assume that the Jacobian ∇vg is non-singular. In this work, we use PIRPNNs for the

115



5.2. Classical Numerical Analysis Approaches for ODEs

numerical solution of the above type of IVPs which solutions are characterized both by
sharp gradients and stiffness [99, 104]. We review the concept of stiffness in the next
paragraph.

Stiffness. Stiffness, a concept of utmost importance in time integration, is particularly
relevant in complex system simulations. Due to their intricate interactions and diverse
components, these systems often exhibit a wide range of time scales, leading to stiff
ODEs/PDEs. There is not a general definition of stiffness, yet as Shampine and Gear
observed, “stiff problems are the ones which integration with a code that aims at nonstiff
problems proves conspicuously inefficient for no obvious reason" [99]. This inefficiency
can arise from several factors, including: (a) the rapid decay of certain solution com-
ponents can impose stringent limitations on the time step size. To maintain numerical
stability, the time step must be sufficiently small to accurately capture the fastest-decaying
components; (b) some components of the solution, which may have significantly differ-
ent concentrations or magnitudes, despite having very large reaction rates, decay much
more rapidly than others, as often occurs in chemical reactions. (c) discretizing PDEs
can often introduce stiffness into the resulting system of ODEs. This is particularly true
when dealing with complex geometries or non-linear terms. Finally, at this point, it is
worthy to emphasize that stiffness is not connected to the presence of steep gradients.
For example, at the regimes where the relaxation oscillations of the van der Pol model
exhibit very sharp changes resembling discontinuities, the equations are not stiff [99].

5.2 Classical Numerical Analysis Approaches for ODEs
Numerical methods for solving Ordinary Differential Equations (ODEs) are designed to
approximate the solution of IVPs of the form:

dy

dt
= f(t, y), y(t0) = y0, (5.3)

where f : R× Rn → Rn is a continuous function. The exact solution y(t) is generally
not available in closed form, necessitating the use of numerical approximations. While
Differential-Algebraic Equations (DAEs) often some more sophisticated solvers, this
section will focus on classical numerical methods for simple ODEs.

5.2.1 Runge-Kutta Methods
Runge-Kutta (RK) methods are a family of iterative techniques for approximating the
solution of ODEs. Developed by Carl Runge and Wilhelm Kutta in the early 20th century,
these methods are used extensively for temporal discretization in various applications.

The core idea behind RK methods is to approximate the integral in the Picard-Lindelöf
theorem, which expresses the solution of an ODE as an integral equation:

y(t) = y0 +
∫︂ t

t0

f(s, y(s)) ds. (5.4)

116



Chapter 5. Solution of the Forward Problems II: stiff ODEs and index-1 DAEs

The RK methods replace this integral with a weighted sum of function evaluations at
specific points within the interval [tn, tn+1]. In particular, polynomial interpolation is
used to approximate the vector field f and integrate the polynomial with quadrature rules.

The general form of an explicit s-stage RK method is given by:

yn+1 = yn + h

s∑︂
i=1

biki, ki = f

⎛⎝tn + cih, yn + h

i−1∑︂
j=1

aijkj

⎞⎠ , (5.5)

where h denotes the step size, and bi, ci, and aij are coefficients specific to each method,
defining the weightings and the intermediate time points. The ki terms represent the
stage derivatives calculated during each step.

Euler’s Method

Euler’s method is the simplest form of a RK method, characterized by a single stage
(s = 1). Its update formula is:

yn+1 = yn + hf(tn, yn). (5.6)

This method uses a linear approximation of the solution and corresponds to the left
endpoint rule for approximating the integral. It has a local truncation error ofO(h2) and
is only first-order accurate globally.

Second-Order Runge-Kutta (RK2)

The second-order RK2 method, commonly known as the midpoint method, employs two
stages (s = 2) to achieve higher accuracy. It is defined by:

k1 = f(tn, yn),

k2 = f

(︃
tn + h

2 , yn + h

2 k1

)︃
,

yn+1 = yn + hk2.

(5.7)

This method approximates the slope at the midpoint of the interval and has a local
truncation error of O(h3).

117



5.2. Classical Numerical Analysis Approaches for ODEs

Fourth-Order Runge-Kutta (RK4)

The fourth-order explicit RK4 is one of the most widely used methods due to its balance
between accuracy and computational cost. It is defined as follows:

k1 = f(tn, yn),

k2 = f

(︃
tn + h

2 , yn + h

2 k1

)︃
,

k3 = f

(︃
tn + h

2 , yn + h

2 k2

)︃
,

k4 = f(tn + h, yn + hk3),

yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4).

(5.8)

Here, k1 represents the slope at the beginning of the interval, k2 and k3 are the slopes at
the midpoint, and k4 is the slope at the endpoint. This method achieves a local truncation
error of O(h5) and a global error of O(h4). Note that, in averaging the four slopes,
greater weight is given to the slopes at the midpoint. If f is independent of y, so that the
DE is equivalent to a simple integral, then RK4 correspond to the Simpson’s quadrature
rule.

Adaptive Step Size Control. In practical applications, maintaining a fixed step size
may not be efficient or accurate enough. Therefore, adaptive methods are designed to
produce an estimate of the local truncation error of a single Runge–Kutta step. This
is done by having two methods, one with order p and one with order p − 1. These
methods have common intermediate steps. Thanks to this, estimating the error has little
or negligible computational cost compared to a step with the higher-order method.

Adaptive methods, such as the Dormand-Prince method (DOPRI45), are designed
to dynamically adjust the step size based on an error estimate. The Dormand-Prince
method is a fifth-order method with an embedded fourth-order error estimate, commonly
implemented in MATLAB as ode45.

The adaptive step size strategy aims to ensure that the local error en satisfies:

∥en∥ ≈ ϵ, (5.9)

where ϵ is a user-defined tolerance. If the estimated error is too large, the step size h is
decreased; if it is too small, h is increased, thereby optimizing the computational effort
while maintaining the desired accuracy.

Adaptive methods use two sets of coefficients bi and b∗
i to compute two estimates of

yn+1 as follows:

yn+1 = yn + h

s∑︂
i=1

biki, y∗
n+1 = yn + h

s∑︂
i=1

b∗
i ki, (5.10)
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where ki are the same stage in both the two methods. The error is then estimated as:

en = yn+1 − y∗
n+1 = h

s∑︂
i=1

(bi − b∗
i )ki. (5.11)

This error estimate, which is O(hp), is used to adaptively control the step size, ensuring
that the integration process remains efficient and accurate.

Implicit Runge-Kutta schemes. All RK methods mentioned up to now are explicit
methods. Explicit RK methods are generally unsuitable for the solution of stiff equations
because their region of absolute stability is small; in particular, it is bounded. This issue
is especially important in the solution of PDEs. A generic s-stages implicit-RK scheme
can be written as:

k1 = f(t0 + c1h, y0 + h

s∑︂
ℓ=1

a1ℓkℓ)

...

ks = f(t0 + csh, y0 + h

s∑︂
ℓ=1

asℓkℓ)

(5.12)

where k1, . . . , ks satisfy the above set of nonlinear equations. The updated solution y1
is then computed as follows:

y1 = y0 + h

s∑︂
i=1

biki. (5.13)

The coefficients defining an implicit RK method can be organized compactly in a Butcher
tableau:

c A
bT =

c1 a11 · · · a1s

c2 a21 · · · a2s

...
...

. . .
...

cs as1 · · · ass

b1 · · · bs

(5.14)

Note that in contrast to explicit methods, the matrix A is a general matrix not required to
be strictly lower triangular.

The consequence of this difference is that at every step, a system of algebraic equations
has to be solved. This increases the computational cost considerably. If a method with s
stages is used to solve a DE with m components, then the system of algebraic equations
has ms components. This can be contrasted with implicit linear multistep methods (the
other big family of methods for ODEs): an implicit s-step linear multistep method needs
to solve a system of algebraic equations with only m components, so the size of the
system does not increase as the number of steps increases.
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The three simplest examples of implicit RK methods are the implicit Euler, midpoint
and trapezoidal methods, that have the following tableaux:

1 1
1 ,

1/2 1/2
1 ,

0 0 0
1 1/2 1/2

1/2 1/2
, (5.15)

respectively. For more accurate higher order scheme, one can combine collocation with
numerical quadrature. For example, using Gauss or Radau quadrature scheme. Here we
consider the 2-stages Gauss, 4th order, A-stable Gauss method with the following array
of butcher:

1
2 −
√

3
6

1
4

1
4 −
√

3
6

1
2 +
√

3
6

1
4 +
√

3
6

1
4

1
2

1
2

(5.16)

We also consider in our comparison, the A-stable, 2-stages (IIA) and 3-stages (IA) Radau
schemes that have the following Butcher tableaux:

1
3

5
12 − 1

12
1 3

4
1
4

3
4

1
4

,

0 1
9

−1−
√

6
18

−1 +
√

6
18

6−
√

6
10

1
9

88 + 7
√

6
360

88− 43
√

6
360

6 +
√

6
10

1
9

88 + 43
√

6
360

88− 7
√

6
360

1
9

16 +
√

6
36

16−
√

6
36

. (5.17)

Stability of Runge–Kutta Methods. Implicit RK methods are preferred over explicit
methods for their superior stability, particularly when solving stiff equations. To illustrate
this, consider the linear test equation:

y′ = λy. (5.18)

Applying a RK method to this equation results in the iterative formula:

yn+1 = r(hλ)yn, (5.19)

where the stability function r(z) is defined as:

r(z) = 1 + zbT (I − zA)−1e = det(I − zA+ zebT )
det(I − zA) , (5.20)

with z = hλ and e representing the vector of ones. Here, A, b, and c are the coefficients
that characterize the specific RK method. The stability function r(z) determines the
behavior of the numerical solution in response to the linear test equation.
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For a method with s stages, r(z) is the ratio of two polynomials of degree s. In
the case of explicit methods, the matrix A is strictly lower triangular, which simplifies
the determinant det(I − zA) to 1. Consequently, the stability function r(z) for explicit
methods is always a polynomial.

The numerical solution yn decays to zero if |r(z)| < 1, with z = hλ. The set of all z
values satisfying this condition is known as the domain of absolute stability. A method
is termed absolutely stable if all z with Re(z) < 0 are within this domain. Since the
stability function of explicit RK methods is a polynomial, these methods can never be
A-stable, meaning they cannot maintain stability for all Re(z) < 0.

In contrast, implicit RK methods have a more complex stability function, allowing
them to achieve A-stability and thus handle stiff problems more effectively.

5.2.2 Linear multi-step methods
Linear multistep methods leverage information from the previous s steps to approximate
the solution at the current step. These methods are defined as:

s∑︂
j=0

ajyn+j = h

s∑︂
j=0

bjf(tn+j , yn+j), (5.21)

where aj and bj are coefficients, h is the step size, and s is the number of previous
steps used in the method. The values of yn and f(tn, yn) are linearly combined to
compute yn+s. The method is termed explicit if bs = 0 and implicit if bs ̸= 0. Implicit
methods typically require solving a nonlinear equation at each step, often using iterative
techniques like Newton’s method.

Three prominent families of linear multistep methods are the Adams–Bashforth
methods, the Adams–Moulton methods, and the BDF.

Adams–Bashforth Methods. The Adams–Bashforth methods are a class of explicit
linear multistep methods. They are defined by the coefficients as−1 = −1 and aj = 0
for j < s − 1. The coefficients bj are selected to ensure that the method achieves an
order of accuracy s. This uniquely determines the coefficients of the method.

Adams–Moulton Methods. The Adams–Moulton methods share similarities with the
Adams–Bashforth methods in terms of the coefficients aj , where as−1 = −1 and aj = 0
for j < s − 1. However, these methods are implicit, allowing the coefficient bs to be
non-zero. This flexibility enables an s-step Adams–Moulton method to achieve an order
of s+ 1, whereas an s-step Adams–Bashforth method only attains an order of s.
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Backward Differentiation Formulas. The BDF methods are implicit linear multistep
methods designed for stiff DEs. In these methods, bj = 0 for all j < s, and the remaining
coefficients are chosen to achieve the maximum possible order s. BDF methods are
particularly useful for solving stiff problems due to their favorable stability properties.

The MATLAB solver ‘ode15s‘ is a popular implementation of a variable-order BDF
method. It adjusts the order and step size dynamically to maintain a balance between
computational efficiency and accuracy. The solver uses orders ranging from 1 to 5,
automatically selecting the most appropriate order and step size based on error estimates.

Dahlquist Barriers. The convergence properties of linear multistep methods are con-
strained by the Dahlquist barriers:

1. First Dahlquist Barrier: A zero-stable q-step linear multistep method cannot exceed
an order of q+1 if q is odd and q+2 if q is even. For explicit methods, the maximum
attainable order is q.

2. Second Dahlquist Barrier: No explicit linear multistep method is A-stable. More-
over, the maximum order for an implicit A-stable linear multistep method is 2.
Among these, the trapezoidal rule has the lowest error constant for methods of
order 2.

These barriers underscore the limitations in designing high-order, stable multistep
methods, particularly for stiff problems.

5.3 The Proposed Physics-Informed Random Projection Neu-
ral Network for the solution of ODEs and index-1 DAEs.

Here, we propose a PIML scheme based on the concept of random projections, and
particularly based on Theorem 1 (see also [203, 159, 160]) for the solution of IVPs of
systems given by Eq.(5.1)-(5.2) in n collocation points in an interval, say [t0 tf ]. Based
on the above, the output of the random projection network is spanned by the rangeR(Φ),
i.e., the column vectors of ΦN , say ϕi ∈ Rn. Hence, the output of the network can be
written as:

Y N =
N∑︂

i=1
wo

i ϕi (5.22)

For an IVP of m variables, we construct m such networks.
Let’s denote by Ψ(t,W ,W o,P ) the set of functions ΨNi(t,wo

i ,pi), i = 1, 2, . . . ,m
that approximate the solution profile ui at time t, defined as:

ΨNi(t,wi,w
o
i ,pi) = zi + (t− t0)wo

i
T ΦNi(t,wi,pi), (5.23)

where ΦNi(t,wi,pi) ∈ RN is the column vector containing the values of the N basis
functions at time t as shaped by wi and pi containing the values of the parameters of
the N basis functions and wo

i = [wo
1i w

o
2i . . . w

o
Ni]T ∈ RN is the vector containing the
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values of the output weights of the i-th network. Note that the above set of functions are
continuous functions of t and satisfy explicitly the initial conditions.

For index-1 DAEs, with say Mij = 0,∀i ≥ l, j = 1, 2, . . . ,m, or in the semi-
explicit form of (5.2), there are no explicit initial conditions zi for the variables ui,
i = l, l+1, . . . ,m, or the variables v in (5.2): these values have to satisfy the constraints
fi(t,u) = 0, i ≥ l, (equivalently 0 = g(t,u,v)) ∀t, starting with consistent initial
conditions. Assuming that the corresponding Jacobian matrix of the fi(t,u) = 0,
i = l, l + 1, . . . ,m w.r.t. ui, and for the semi-explicit form (5.2), ∇vg, is not singular,
one has to solve initially at t = 0, using for example Newton-Raphson iterations, the above
nonlinear system of m − l algebraic equations in order to find a consistent set of initial
values. Then, one can write the approximation functions of the ui, i = l, l + 1, . . . ,m
(or v in the case of semi-explicit form (5.2)) as in Eq. (5.23).

With n collocation points in [t0 tf ], by fixing the values of the interval weights
wi and the shape parameters pi, the loss function that we seek to minimize w.r.t. the
unknown coefficients wo

i is given by:

L(W o) =
n∑︂

k=1

m∑︂
i=1

m∑︂
j=1

(︃
Mij

dΨNi

dt
(tk,wi,w

o
i ,pi)− fi

(︁
tk,Ψ(tk,W ,W o,P )

)︁)︃2
.

(5.24)

When the system of ODEs/DAEs results from the spatial discretization of PDEs, we
assume that the corresponding boundary conditions have been appropriately incorporated
into the resulting algebraic equations explicitly or otherwise can be added in the loss
function as algebraic constraints. Here, for eachNi, and for j = 1, . . . , N , i = 1, . . . ,m,
we take N Gaussian kernels given by:

gji(t, wji, bji, αji, cj) = e−αji(wjit+bji−cj)2
. (5.25)

The values of the (hyper) parameters, namely wji, bji, and cj are set as:

wji = 1, bij = 0, cj = tj = t0 + (j − 1) tf − t0
N − 1 , (5.26)

while the values of the shape parameters αji > 0 are sampled from an appropriately
chosen uniform distribution (see below). The time derivative of ΨNi is given by:

dΨNi

dt
=

N∑︂
j=1

wo
jie

−αji(t−tj)2
− 2(t− t0)

N∑︂
j=1

αjiw
o
ji(t− tj)e−αji(t−tj)2

. (5.27)
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5.3.1 Approximation with the PIRPNN
Here, we show that the PIRPNN given by Eq.(5.23) is a universal approximator of the
solution u of the ODEs in canonical form or of the index-1 DAEs in the semi-explicit
form (5.2) [95].

Theorem 5.3.1. For the IVP problem (5.1) in the canonical form or in the semi-explicit
form (5.2) for which the Picard-Lindelöf Theorem [234] holds true, the PIRPNN solution
ΨNi given by Eq.(5.23) with N Gaussian basis functions defined by Eq.(5.25) whose
shape parameters αji are drawn i.i.d. from a uniform distribution across the sample
space, converges uniformly to the actual solution profile u(t) in a closed time interval
[t0 tf ] with an upper bound of the order of O( 1√

N
) with a probability 1 − δ for any

small δ > 0.

Proof. Assuming that the system in Eq. (5.1) can be written in the canonical form
and the Picard-Lindelöf Theorem [234] holds true, then it exists a unique continuously
differentiable function defined on a closed time interval [t0 tf ] given by:

ui(t) = zi +
∫︂ t

t0

fi(s,u(s))ds, i = 1, 2, . . .m. (5.28)

From Eq.(5.23), we have:

ΨNi(t) = zi + (t− t0)
N∑︂

j=1
wo

j e
−αj(t−tj)2

. (5.29)

By the change of variables, τ = s− t0
t− t0

, the integral in Eq.(5.28) becomes∫︂ t

t0

fi(s,u(s))ds = (t− t0)
∫︂ 1

0
fi(τ(t− t0) + t0,u(τ(t− t0) + t0))dτ. (5.30)

Hence, by Eqs.(5.28),(5.29),(5.30), we have:

In(t) ≡
∫︂ 1

0
fi(τ(t− t0) + t0,u(τ(t− t0) + t0))dτ ≈

N∑︂
j=1

wo
j e

−αj(t−tj)2
. (5.31)

Thus, in fact, upon convergence, the PIRPNN provides an approximation of the nor-
malized integral. By Theorem 2.1, we have that in the interval [t0 tf ], the PIRPNN
with the shape parameter of the Gaussian kernel drawn i.i.d. from a uniform distribu-
tion provides, a uniform approximation of the integral in Eq.(5.28) in terms of a Monte
Carlo integration method as also described in [196]. Hence, as the initial conditions are
explicitly satisfied by ΨNi(t), we have from Eq.(2.39) an upper bound for the uniform
approximation of the solution profile ui.

For index-1 DAEs in the semi-explicit form of (5.2), by the implicit function theorem,
we have that the DAE system is in principle equivalent with the ODE system in the
canonical form:

du(t)
dt

= f(t,u(t),H(t,u)), (5.32)
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where v(t) = H(t,u(t)) is the unique solution of 0 = g(t,u(t),v(t)). Hence, in
that case, the proof of convergence reduces to the one above for the ODE system in the
canonical form.

Computation of the unknown weights

For n collocation points, the outputs of each network Ni ≡ Ni(t1, t2, . . . tn,wo
i ,pi) ∈

Rn, i = 1, 2, . . .m read:

Ni = Riw
o
i , Ri ≡ Ri(t1, . . . , tn,pi) =

⎡⎢⎣g1i(t1) · · · gNi(t1)
...

...
...

g1i(tn) · · · gNi(tn)

⎤⎥⎦ . (5.33)

The minimization of the loss function (5.24) is performed over thenm nonlinear residuals
Fq:

Fq(W o) =
m∑︂

j=1
Mij

dΨNj

dtl
(tl,wo

j )− fi(tl,ΨN1(tl,wo
1), . . . ,ΨNm(tl,wo

m)),

(5.34)
where q = l + (i − 1)n, i = 1, 2, . . .m, l = 1, 2, . . . n, W 0 ∈ RmN is the column
vector obtained by collecting the values of all m vectors wo

i ∈ RN , W o = [W o
k ] =

[wo
1,w

o
2 . . . ,w

o
m]T , k = 1, 2, . . . ,mN . Thus, the solution to the above non-linear least

squares problem can be obtained, e.g., with Newton-type iterations such as Newton-
Raphson, quasi-Newton and Gauss-Newton methods (see, e.g., [235]). For example, by
setting F (W o) = [F1(W o) · · ·Fq(W o) · · ·F(nm)(W o)]T , the update dW o(ν) at the
(ν)-th Gauss-Newton iteration is computed by the solution of the linearized system:

∇W o(ν)F dW o(ν) = −F (W o(ν)), (5.35)

where ∇W o(ν)F ∈ Rnm×mN is the Jacobian matrix of F w.r.t. W o(ν). Note that the
residuals depend on the derivatives ∂ΨNi(·)

∂tl
and the approximation functions ΨNi(·),

while the elements of the Jacobian matrix depend on the derivatives of ∂ΨNi(·)
∂wo

ji
as well

as on the mixed derivatives ∂2ΨNi(·)
∂tl∂wo

ji
. Based on (5.27), the latter are given by

∂2ΨNi

∂tl∂wo
ji

= ∂Ni(tl,wo
i ,pi)

∂wo
ji

− 2(tl − t0)αji(tl + bji − cj)e(−αji(tl+bji−cj)2). (5.36)

Thus, the elements of∇W o(ν)F , for q = l+ (i− 1)n, p = j + (k − 1)N , are given by:

∂Fq

∂W o
p

=
∑︁m

j=1 Mij∂
2ΨNi(·)

∂tl∂wo
jk

− ∂fi(tl)
∂wo

jk

. (5.37)

However, even when N ≥ n, the Jacobian matrix is expected to be rank deficient,
or nearly rank deficient, since some rows due to the random construction of the basis
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functions can be nearly linear dependent [203]. Thus, the solution of the corresponding
system, and depending on the size of the problem, can be solved using for example tSVD
or QR factorization with regularization. The truncated SVD decomposition scheme leads
to the Moore-Penrose pseudo-inverse and the updates dW o(ν) are given by:

dW o(ν) = −(∇W o(ν)F )†F (W o(ν)), (∇W o(ν)F )† = V ϵΣ†
ϵUT

ϵ , (5.38)

where Σ†
ϵ is the inverse of the diagonal matrix with singular values of ∇W oF above a

certain threshold ϵ, and U ϵ, V ϵ are the matrices with columns the corresponding left
and right eigenvectors, respectively. At this point, in order to decrease the computational
cost, one can implement a Quasi-Newton scheme, thus using the same pseudo-inverse of
the Jacobian for the next iterations until convergence.

For large-scale sparse Jacobian matrices, as those arising for example from the
discretization of PDEs, one can solve the regularization problem using other methods
such as sparse QR factorization. Here, to account for the ill-posed Jacobian, we have
used a sparse QR factorization with regularization as implemented by SuiteSparseQR,
a multithreaded sparse QR factorization package [236].

To summarize, the above scheme provides a numerical analysis-assisted PINN in a
form that approximates the integral solution of the Picard–Lindelöf Theorem based on
random projections, thus providing analytically the Jacobian matrix for the Newton’s
iterations.

5.4 Parsimonious construction of the PIRPNN

5.4.1 The adaptive step-size scheme
In order to deal with the presence of stiffness and sharp changes that resemble singularities
at the time interval of interest, we propose an adaptive step-size scheme for adjusting
the interval of integration as follows. The full-time interval of integration [t0 tf ] is
divided into sub-intervals, i.e., [t0 tf ] = [t0 t1]∪ [t1 t2]∪ . . . ,∪[tk tk+1]∪ · · · ∪
[tend−1 tf ], where t1, t2, . . . , tk, . . . , tend−1 are determined in an adaptive way. This
decomposition of the interval leads to the solution of consecutive IVPs. Let’s assume
that the problem has been solved up to [tk−1 tk], hence we have found u(k−1)

i and
we are seeking to advance u(k)

i to the next interval, say, [tk tk+1] with a step size of
∆tk = tk+1 − tk.

At each Newton’s iteration, say ν (here ν ≤ νmax = 5), we compute the normal-
ized residuals (precision to tolerance ratio) res(ν)

q , for each component Fq(W o(ν)) of
F (W o(ν)), as: [98, 237]

res(ν)
q = Fq(W o(ν))

AbsTol +RelTol · dΨNi

dtl
(tl,wo(ν)

i )
(5.39)

where AbsTol is the absolute threshold tolerance, RelTol is the tolerance relative to the
size of each derivative component at time tl and, as in Eq. 5.34, q = l + (i − 1)n, i =
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1, 2, . . .m, l = 1, 2, . . . n. Thus, we compute the approximation error, say err(ν), as the
l2-norm of the vector of the normalized residuals res(ν) = [res(ν)

1 , res
(ν)
2 , . . . , res

(ν)
nm]:

err(ν) =
⃦⃦⃦⃦
res(ν)

⃦⃦⃦⃦
l2
. (5.40)

Now, if at the ν-th iteration, for one ν ≤ νmax, err(ν) < 1 the numerical solution
is accepted, otherwise (if up to the last iteration νmax, err

(νmax) ≥ 1) the numerical
solution is rejected.

In both cases, the size of the time interval is updated according to the elementary
local error control algorithm [237]:

∆t∗k = 0.8γ ·∆tk, with γ =
(︃

1
err

)︃ 1
ν+1

, (5.41)

where γ is the scaling factor and 0.8 is a safe/conservative factor; ∆t∗k is not allowed to
increase or decrease a lot, so γ is not higher than a γmax (here set to 4) and smaller than
a γmin (here set to 0.1). Thus, if the Quasi-Newton scheme does not converge to the
desired tolerance within a number of iterations, say νmax, then the step size is decreased,
thus redefining a new guess t∗k+1 = tk + ∆t∗k for tk+1 and the Quasi-Newton scheme
is repeated in the interval [tk t∗k+1]. Finally, we note that in the above scheme, the
choice of the first sub-interval [t0 t1] was estimated using an automatic detection code
for selecting the starting step as described in [238].

5.4.2 A continuation method for Newton’s iterations
For Newton-type schemes, the speed of the convergence to the solution depends on

the choice of the initial guess, here, for the unknown weights. Here, to facilitate the
convergence of Newton’s iterations, we address a numerical natural continuation method
for providing “good” initial guesses for the weights of the PIRPNN.

Suppose that the algorithm has already converged to the solution in the interval
[tk−1 tk]; we want to provide for the next time interval [tk tk+1], as computed from
the proposed adaptation scheme described above, a good initial guess for the weights of
the PIRPNN. We state the following proposition [95].
Proposition 5.4.1. Let Ψ(tk) ∈ Rm be the solution found with PIRPNN at the end of
the time interval [tk−1 tk]. Then, an initial guess for the weights of the PIRPNN for
the time interval [tk tk+1] is given by:

Ŵ
o

= dΨ(tk)
dt

ΦT

||Φ||2l2

, (5.42)

where Ŵ
o
∈ Rm×N is the matrix with the initial guess of the output weights of the m

PIRPNNs and Φ ∈ RN is the vector containing the values of the random basis functions
in the interval [tk tk+1].
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Proof. At time tk, a first-order estimation of the solution, Ψ(tk+1) ∈ Rm reads:

Ψ̂(tk+1) = Ψ(tk) + dΨ(tk)
dt

(tk+1 − tk), (5.43)

where dΨ(tk)
dt is known. For the next time interval [tk tk+1], the approximation of the

solution with the PIRPNNs is given by:

Ψ(tk+1) = Ψ(tk) + (tk+1 − tk)W oΦ. (5.44)

By Eqs.(5.43), (5.44), we get:

Ŵ
o
Φ = dΨ(tk)

dt
. (5.45)

It can be easily seen, that the truncated SVD of Φ is given by:

ΦN×1 = UN×1σ1, UN×1 = ΦN×1

||Φ||l2

, σ1 = ||Φ||l2 . (5.46)

Thus, the pseudo-inverse of Φ, is Φ† = ΦT

||Φ||2l2

. Hence, by Eq.(5.45), an initial guess

for the weights for the time interval [tk tk+1] is given by:

Ŵ
o

= dΨ(tk)
dt

Φ† = dΨ(tk)
dt

ΦT

||Φ||2l2

. (5.47)

5.4.3 Estimation of the interval of the uniform distribution based on
the variance/bias trade-off decomposition

Based on Eqs.(2.40), (5.22) one has to choose the number N of the basis functions,
and the interval, say U = [0 αu], from which the values of the shape parameters αi are
drawn based on a probability distribution p. The theorems of uniform convergence 2.4.2
and 5.3.1 consider the problem from the function approximation point of view.

Here, we construct N random vectors by parsimoniously sampling the values of the
shape parameter from an appropriately bounded uniform interval for minimizing the
two sources of error approximation, i.e., the bias and the variance in order to get good
generalization properties. In our scheme, these, over all possible values of the shape
parameter α are given by (see Eq. (5.29)):

e(t) = E
[︃ N∑︂

j=1
wo

j e
−αj(t−tj)2

]︃
− In(t),

σ2(t) = E
[︃
(

N∑︂
j=1

wo
j e

−αj(t−tj)2
)2
]︃
− E2

[︃ N∑︂
j=1

wo
j e

−αj(t−tj)2
]︃ (5.48)
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Figure 5.1: Numerical solution of the van der Pol ODEs (5.53) with µ = 100 using
the PIRPNN in the interval [0 3µ] w.r.t. c and N for n = 20; RelTol and AbsTol
were set to 1e−06. (a) Bias-Variance trade-off loss (5.54) w.r.t. the reference solution as
obtained with ode15s with AbsTol and RelTol set to 1E−14. (b) Computational times
(s). (c) Numerical approximation accuracy (indicatively l∞ error for u2) vs. execution
times with the proposed continuation method (green) and without continuation (thus
initializing all weights to zero (magenta) or randomly (blue)).

where E denotes the expectation operator. In the above, overfitting which is connected
with a high variance occurs for large values of α and underfitting, which is connected
with a high bias approximation error) occurs for small values of α.
The expected value of the kernel ϕ(t− tj ;α) = e−a(t−tj)2

, t ̸= tj w.r.t. the probability
density function of the uniform distribution of the random variable α reads:

E[ϕ(t− tj ;α)] =
αu∫︂
0

fα(α)e−α(t−tj)2
dα = 1− e−αu(t−tj)2

αu(t− tj)2 . (5.49)

Similarly, the variance is given by:

σ2[ϕ(t− tj ;α)] =
1∫︂

e−αu(t−tj )2

ϕ2 1
αu(t− tj)2

1
ϕ
dϕ− E[ϕ]2 =

= 1− e−2αu(t−tj)2

2αu(t− tj)2 − E[ϕ]2.

(5.50)

At the limits of t− tj = dt = tf − t0
N

, from Eqs.(5.49), (5.50), we get:

E[ϕ(dt;α)] = N2

(tf − t0)2
1− e

−αu

(tf − t0)2

N2

αu
,

σ2[ϕ(dt;α)] = N2

(tf − t0)2
1− e

−2αu

(tf − t0)2

N2

2αu
− E[ϕ(dt;α)]2.

(5.51)
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The above expressions suggest that αu = N2

c2(N)
1

(tf − t0)2 , c(N) > 0.

Indeed, our choice of such expression for αu, transform (5.51), taking rid of the
dependence to the time-step (t− t0) analogously to a re-normalization of the input, lead
to the following time-step independent mean and variance:

E[ϕ(dt;α)] = c2(N)
(︃

1− exp
(︁
− 1
c2(N)

)︁)︃
,

σ2[ϕ(dt;α)] = c2(N)
1− exp

(︁
− 2

c2(N)
)︁

2 − E[ϕ(dt;α)]2.
(5.52)

This leaves us with only one parameter c = c(N) to be determined for the “optimal"
estimation of the upper bound of U . Here, the value of c(N) is found based on a
reference solution, say uref resulting from the integration of a stiff problem, whose
solution profiles contain also sharp gradients.

Thus, in order to calibrate the hyperparameters of the scheme, once and for all, we
have chosen as a reference solution the one resulting from the van der Pol (vdP) ODEs
given by:

du1

dt
= u2,

du2

dt
= µ(1− u1

2)u2 − u1, (5.53)

for µ = 100 and u1(0) = 2, u2(0) = 0 as initial conditions; the time interval was set to
[0 3µ], i.e., approximately three times the period of the relaxation oscillations, which
for µ ≫ 1, is T ≈ µ(3 − 2 ln 2). The particular choice of µ = 100 results to a stiff
problem, containing also very sharp gradients resembling approximately a discontinuity
in the solution profile within the integration interval. The reference solution was obtained
using the ode15s with absolute and relative error tolerances set to 1E−14. In order to
estimate the optimal values (c,N) (while we fixed n = 20), we computed the bias
(B)-variance(V) trade-off loss LBV function for u2 (whose amplitude for the particular
setting is about 75 times bigger than the amplitude of u1), using 600, 000 equidistant
points tk in [0 3µ] and running each PIRPNN configuration 100 times. Thus, the B-V
trade-off loss is given by:

LBV = (B(ΨN2))2 + V (ΨN2) = Eα((ΨN2 − uref,2)2)

B(ΨN2) = Eα

(︃600,000∑︂
k=1

(ΨN2(tk, α,wo
2)− uref,2(tk))

)︃

V (ΨN2) = Eα

(︃600,000∑︂
k=1

(ΨN2(tk, α,wo
2)− uref,2(tk))2

)︃
,

(5.54)

where the expectation is estimated over the 100 runs. Based on the above, the parsimo-
nious selection of the values of the variablesN and c giving the best numerical accuracy
and minimum computational cost are N = 20, c = 12 (see Figs. 5.1(a),(b). We note
that the above parsimonious optimal values are fixed once and for all, for all benchmark
problems considered here.
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Finally, in order to demonstrate the efficiency of the proposed continuation approach,
in Figure 5.1(c), we illustrate the l∞ numerical approximation accuracy (indicatively
for u2) w.r.t. the reference solution vs. the required execution times with and without
(thus setting all weights to zero or randomly as initial guesses for the Newton iterations)
the proposed continuation method. As shown, the implementation of the proposed
continuation scheme results in significantly better performances.

5.5 Numerical Implementation and Results

We implemented the proposed numerical scheme in MATLAB 2020b. Numerical results
were obtained running on an Intel Xeon Gold 6240R CPU @2.40GHz frequency and
35.75 MB of cache. Each execution is a single-thread, thus parallel encoding is not used.
The For-loop for the formation of the Jacobian matrix ∇woF was implemented via a
MEX file calling a C function and the Moore-Penrose pseudo-inverse was computed with
the MATLAB built-in function pinv, with the default tolerance. In all our computations,
we have used a fixed number of collocation points n = 20 and number of basis functions
N = 20, with c = 12 as discussed above. We note that a different choice of n would
result in different values of c, thus affecting the step-size adaptation.

For assessing the performance of the proposed scheme, here we considered six
benchmark problems. In particular, we considered (a) two index-1 DAEs: the Robertson
[239, 104] model of chemical kinetics and a non-autonomous power discharge control
model [104]; (b) two stiff systems of ODEs: the Prothero-Robinson [240] and the van
der Pol model [99]; and (c) the Allen-Chan metastable PDE phase-field model [58, 105]
discretized in space with central FD. The performance of the proposed scheme was
compared against two adaptive step-size solvers of the MATLAB ODE suite [103],
namely ode15s and ode23t, appropriate for stiff ODEs and index-1 DAEs, thus using
the analytical Jacobian. Moreover, we compared the performance of the scheme with
a deep learning PINN as implemented in the DeepXDE library for scientific ML and
physics-informed learning [93] for the solution of the Lotka-Volterra ODEs included in
the demos of the library.

In order to estimate the numerical approximation error, we used as reference solution
the one computed with ode15s setting the relative and absolute tolerances to 1E−14 and
1E−16, respectively. To this aim, we computed the l2 and l∞ norms of the approximation
errors, between the computed solutions using the various schemes, and the reference
solutions, using grids of say, M equidistant points in the time intervals of interest.
In the following, we report the aforementioned error metrics, ||ϵ||l2 =

√︂∑︁M
j=1 ϵj

2,
||ϵ||l∞ = maxM

j=1 |ϵj |, for the component of the solution for which the absolute error
was maximum. Finally, we ran each solver for a wide range of relative tolerances reltol,
thus setting the absolute tolerances abstol = reltol·10−3. For each case, we ran the ODE
solvers for 30 times and computed the median, maximum and minimum computational
times. We note that a direct comparison of the ode15s and ode23t solvers and our
scheme, based only on the relative and absolute tolerances (that is fixing them and check
which one results in the best numerical approximation accuracy) cannot be done as these
tolerances/convergence errors for ode15s and ode23t are at the level of the solution,
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while for our PIRPNN scheme are at the level of the differential operator/first derivative.
Finally, we underline that the proposed PIRPNN scheme provides an approximate

solution in the form of an analytical function that can be evaluated explicitly at any point
in the interval, while with the odesuite solvers, for the evaluation of the solution at any
point in the interval, one needs to resort to the computationally expensive interpolation (as
implemented by the function deval[241] in particular). Thus, if one needs to evaluate the
solution in a dense grid of equidistant points in order to perform tasks such as the analysis
of chaotic and quasi-periodic dynamics using for example FFT, the computational cost
can be considerably high. Therefore, the comparison between solvers was made both on
the grid of points resulting from the corresponding adaptive step-size methods and on
dense grids of equidistant points.

5.5.1 Case Study 1: Prothero-Robinson problem
Our first problem is the Prothero-Robinson stiff ODE benchmark problem [240, 101]
given by

du

dt
= λ(u− ϕ(t)) + ϕ′(t), λ < 0. (5.55)

Its analytical solution is u(t) = ϕ(t). The problem becomes stiff for λ ≪ −1. For our
numerical simulations, we chose ϕ(t) = sin(t), u(0) = ϕ(0) = sin(0) = 0, and [0, 2π]
as the time interval where the solution is sought, while the parameter λ controlling the
stiffness is set equal to −1E+05.
Please note that, although the analytical solution is simple and smooth, i.e., does not
exhibit any steep gradient, the problem is very difficult to solve with a non-stiff solver (for
example using ode45 Matlab solver employing the adaptive Dormand-Prince scheme).

Figures 5.2(a)-(f) depict the l2, l∞ numerical approximation accuracy w.r.t. the
analytical solution vs. the required computational times. Figures 5.2(a)-(b) depict
the computational times of the corresponding adaptive step-size solution procedure.
Figure 5.2(c)-(d) depict the computational times of the various solvers when the solution
is sought in a grid of 10,000 equidistant points in [0 2π]. Finally, Figures 5.3(a),(b)
depict the l2 numerical approximation accuracy (indicatively for u2) w.r.t. the reference
solution vs. the number of adaptive steps (Figure 5.3(a)), the number of function
evaluations (Figure 5.3(b)).

As it is shown, the PIRPNN outperforms ode23t in all metrics, while for all practical
purposes its performance is equivalent to the ode15s w.r.t. the computational times
resulting from the corresponding adaptive step-size solution procedure. Besides, when
the solution is sought in the dense grid of equidistant points, the computational times
resulting from the implementation of the odesuite solvers are much larger than the ones
resulting from the implementation of the proposed PIRPNN scheme. As it is also shown
in Figure 5.3, our scheme, compared to both ode15s and ode23t, is more efficient in
terms of the number of adaptive steps needed to compute the solution, while it needs
more function evaluations than ode15s and less than ode23t.
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Figure 5.2: The Prothero-Robinson[240] benchmark stiff ODE problem with λ =
−1E+05, see Eq. (5.55). (a)-(b) l2, l∞ numerical approximation errors w.r.t. the
analytical solution u(t) = sin(t) vs. execution times (s) of the various schemes, using
the adaptation in time step. (c)-(d) l2, l∞ numerical approximation errors w.r.t. the
analytical solution vs. execution times (s) when the solution is sought in a grid of 10,000
equidistant points in [0 2π] times (s).
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Figure 5.3: The Prothero-Robinson[240] stiff ODE with λ = −1E+05, see Eq. (5.55).
l2 numerical approximation error vs. (a) the number of adaptive steps, (b) the number of
function evaluations.
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5.5.2 Case Study 2: The van der Pol model
Our second benchmark problem is the stiff van der Pol system of ODEs (5.53) introduced
in section 5.4. Figures 5.4(a),(b) depict the reference solution profiles for u1, u2, with
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Figure 5.4: The vdP[99] ODEs with µ = 100, see Eq. (5.53). The numerical reference
solution is obtained in the time interval [0 3µ] with ode15s with relative and absolute
tolerances set to 1E−14 and 1E−16, respectively. (a) Reference solution for u1, (b)
reference solution for u2 with a zoom close to a steep gradient. (c)-(d) l2, l∞ numerical
approximation errors (indicatively for u2) w.r.t. the reference solution vs. execution times
(s) of the corresponding adaptive step-size solution procedure. (e)-(f) l2, l∞ numerical
approximation errors (indicatively for u2) w.r.t. the reference solution vs. execution
times (s) when the solution is sought in a grid of 600’000 equidistant points in [0 3µ]
times (s).

µ = 100 in the time interval [0 3µ] as obtained with ode15s with the relative and
absolute tolerances set to 1E−14 and 1E−16, respectively. The relaxation oscillations
of the vdP model exhibit both very sharp gradients resembling discontinuities, and
stiffness [99]. Figures 5.4(c)-(f) depict the l2, l∞ numerical approximation accuracy
(indicatively for u2) w.r.t. the reference solution vs. the required computational times.
Figures 5.4(c)-(d) depict the computational times of the corresponding adaptive step-size
solution procedure; upon convergence, the approximation errors are computed based on
a uniform grid of 600’000 points in [0 3µ]. Figure 5.4(e)-(f) depict the computational
times of the various solvers when the solution is sought in a grid of 600,000 equidistant
points (such a number of points is required in order to appropriately trace uniformly the
solution in the interval of interest due to the presence of very steep gradients). Finally,
Figures 5.5(a),(b) depict the l2 numerical approximation accuracy (indicatively for u2)
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w.r.t. the reference solution vs. the number of adaptive steps (Figure 5.5(a)), the number
of function evaluations (Figure 5.5(b)).
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Figure 5.5: The vdP [99] ODEs with µ = 100, see Eq. (5.53). l2 numerical approxima-
tion error (indicatively for u2) vs. (a) the number of adaptive steps, (b) the number of
function evaluations.

As it is shown, the PIRPNN outperforms ode23t in all metrics, while for all practical
purposes its performance is equivalent to the ode15s w.r.t. the computational times
resulting from the corresponding adaptive step-size solution procedure. Besides, when
the solution is sought in the dense grid of equidistant points, the computational times
resulting from the implementation of the odesuite solvers are much larger than the ones
resulting from the implementation of the proposed PIRPNN scheme.

As it is shown, our scheme, compared to both ode15s and ode23t, is more efficient
in terms of number of adaptive steps needed to compute the solution, while it needs
a comparable number of function evaluations with ode15s and significantly less than
ode23t.

5.5.3 Case Study 3: The Robertson index-1 DAEs
The Robertson model describes the kinetics of an autocatalytic reaction [239]. This
system of three DAEs is part of the benchmark problems considered in [104]. The set of
the reactions reads:

A
k1−→ B, B + C

k2−→ A+ C, 2B k3−→ B + C, (5.56)

where A, B, C are chemical species and k1 = 0.04, k2 = 104 and k3 = 3 × 107 are
reaction rate constants. Assuming that the total mass of the system is conserved, we have
the following system of index-1 DAEs:

dA

dt
= −k1A+ k2BC,

dB

dt
= +k1A− k2BC − k3B

2,

A+B + C = 1,
(5.57)

where A, B and C denote the concentrations of [A], [B] and [C], respectively. In our
simulations, we set A(0) = 1, B(0) = 0 as initial conditions of the concentrations, and
we solve in the time interval [0 4 · 106] as in [242].
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Figure 5.6: The Robertson[104] index-1 DAEs, see Eq. (5.57). The reference solution
is obtained in the time interval [0 4 · 106] with ode15s with relative and absolute
tolerances set to 1E−14 and 1E−16, respectively. (a)-(b) Reference solution profiles
(indicatively for A, B). (c)-(d) l2, l∞ numerical approximation errors (indicatively for
A) w.r.t. the reference solution vs. execution times (s) of the corresponding adaptive
step-size solution procedure. (e)-(f) l2, l∞ numerical approximation errors (indicatively
for A) w.r.t. the reference solution vs. execution times (s) when the solution is sought in
a grid of 40,000 logarithmically-equidistant points in [0 4 · 106].

Figures 5.6(a)-(b) show the solution profiles ofA,B and C as obtained with ode15s
with relative and absolute tolerances set to 1E−14 and 1E−16, respectively. Fig-
ures 5.6(c)-(f) depict the l2, l∞ numerical approximation errors (indicatively for A)
upon convergence of the corresponding adaptive step-size procedure, w.r.t. the refer-
ence solution using 40, 000 logarithmically-equidistant points in the interval [0 4 ·106].
Figures 5.6(c)-(d) depict the computational times of the corresponding adaptive step-
size solution procedure, while Figures 5.6(e)-(f) depict the computational times required
when the solution is sought in a grid of 40, 000 logarithmically-equidistant points in the
interval [0 4 · 106].

As it is shown, the proposed PIRPNN scheme outperforms ode23t in all metrics, but
compared with the ode15s, the computational times resulting from the adaptive step-
size solution procedure are larger. However, when the solution is sought in the denser
grid of points, the performance of the PIRPNN scheme is equivalent to the one of the
ode15s solver. As it is shown, our scheme is comparable to ode15s and significantly
more efficient than ode23t in terms of number of adaptive steps needed to compute
the solution, while it needs a bigger number of function evaluations than ode15s and
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significantly less than ode23t.

5.5.4 Case Study 4: Power discharge control index-1 DAEs problem
This is a non-autonomous model of six index-1 DAEs, and it is part of the benchmark
problems considered in [104]. The governing equations are:

du1

dt
= (u2 − u1)

20 ,
du2

dt
= − (u4 − 99.1)

75 ,

du3

dt
= µ− u6, 0 = 20u5 − u3

0 = (3.35− 0.075u6 + 0.001u2
6)− u4

u5
,

0 = u3

400
du3

dt
+ µµp

(1.2u1)2 −
du1

dt

µ2

(1.44u1)3 ,

µ = 15 + 5tanh(t− 10), µp = 5
cosh2(t− 10)

.

(5.58)

The initial conditions are u1(0) = u2(0) = 0.25, u3(0) = 734, and consistent initial
conditions (u4(0) = 99.08999492002, u5(0) = 36.7 and u6(0) = 10.00000251671)
were found with Newton-Raphson with a tolerance of 1E−16.

Figures 5.7(a)-(b) depict the reference solution profiles for, indicatively, u2, u3 as
obtained with ode15s with both relative and absolute tolerances set to 1E−14 and 1E−16,
respectively. Similarly to the Robertson model, the solution profiles do not exhibit very
steep gradients. Figures 5.7(c)-(f) depict the l2, l∞ approximation errors (indicatively
for u3), upon convergence of the corresponding adaptive step-size procedure, w.r.t. the
reference solution on the basis of 40, 000 equidistant points in the interval [0 40].
Figures 5.7(c)-(d) depict the computational times of the corresponding adaptive step-size
procedure, while Figures 5.7(e)-(f) depict the required computational times when the
solution is sought in a grid of 40,000 equidistant points.

As it is shown, the proposed PIRPNN scheme outperforms the ode23t solver in all
metrics for higher numerical approximation accuracy, while the best performance w.r.t.
the corresponding adaptive step-size procedure is the one obtained with the ode15s
solver. However, when the solution is sought in the grid of 40,000 equidistant points,
the PIRPNN outperforms ode15s. Finally, our scheme is comparable with ode15s and
significantly more efficient than ode23t in terms of number of adaptive steps needed to
compute the solution, and is comparable with ode15s and significantly more efficient
than ode23t regarding the number of function evaluations.
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Figure 5.7: Power discharge control non-autonomous index-1 DAEs problem [104], see
Eq. (5.58). The reference solution is obtained in the interval [0 40] with ode15s with
relative and absolute tolerances set to 1E−14 and 1E−16, respectively. (a)-(b) Reference
profiles for, indicatively, u2, u3. (c)-(d) l2, l∞ numerical approximation errors (indica-
tively for u3) w.r.t. the reference solution vs. execution times (s) of the corresponding
adaptive step-size solution procedure. (e)-(f) l2, l∞ numerical approximation errors (in-
dicatively for u3) w.r.t. the reference solution vs. execution times (s) when the solution
is sought in a grid of 40,000 equidistant points.

5.5.5 Case Study 5: The Allen-Cahn PDE phase-field model

The Allen-Cahn equation is a famous reaction-diffusion PDE that was proposed in [58]
as a phase-field model for describing the dynamics of the mean curvature flow. Here, for
our illustrations, we considered a one-dimensional formulation given by [105]:

∂u

∂t
= ν

∂2u

∂x2 + u− u3, x ∈ [−1 1],

u(−1, t) = −1, u(1, t) = 1,
(5.59)

with initial condition u(x, 0) = 0.53x + 0.47 sin(−1.5π x). Here, we integrate until
t = 70. For ν = 0.01, the solution is stiff [105], thus exhibiting a metastable behavior
with an initial two-hill configuration that disappears close to t = 40 with a fast transition
to a one-hill stable solution, as depicted in Figure 5.8(a). For our illustrations, we used an
equally spaced grid of 102 points in space and second order centered FD. Hence, (5.59)
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Figure 5.8: Allen-Cahn PDE [105] discretized in space with central FD (see Eq.
(5.60)). The reference solution is obtained for ν = 0.01 in the time interval [0 70]
with theode15s solver, with relative and absolute tolerances set to 1E−14 and 1E−16,
respectively. (a) Contour plot of the reference solution. (b) Contour plot of absolute
approximation error computed with the PIRPNN using 1e−03 for the relative tolerance
and 1e−06 for the absolute tolerance. (c)-(d) l2, l∞ approximation errors w.r.t. the refer-
ence solution vs. execution times (s) of the corresponding adaptive step-size procedure.
(e)-(f) l2, l∞

becomes a system of 100 ODEs:

∂ui

∂t
= ν

(ui+1 − 2ui + ui−1)
dx2 + ui − u3

i ,

u0 = −1, u101 = 1.
(5.60)

Here, for the implementation of the PIRPNN, we have used a sparse QR decomposition as
implemented in the SuiteSparseQR [236]. Figures 5.8(b) depict the absolute numerical
approximation error when using the PIRPNN for relative and absolute tolerances set to
1e−03 and 1e−06, respectively. Figures 5.8(c)-(f) depict the l2, l∞ numerical approxi-
mation errors, upon convergence of the corresponding adaptive step-size procedure, w.r.t.
the reference solution in 70 000 × 102 equidistant points in the time [0 70] and in the
space interval [−1 1], respectively. Figures 5.8(c)-(d) depict the computational times
of the corresponding adaptive step-size procedure, while Figures 5.8(e)-(f) depict the
computational times required when the solution is sought in the uniform spatio-temporal
grid of 102× 70, 000 points.

As shown, the proposed PIRPNN scheme is less efficient than both ode23t and
ode15s when considering the computational times resulting from the corresponding
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5.5. Numerical Implementation and Results

adaptive step-size procedure. However, when considering the computational times re-
quired when the solution is sought in the mesh of 70,000 equidistant points in time,
the PIRPNN outperforms ode23t but still is less efficient than ode15s. However, our
proposed scheme, compared to both ode15s and ode23t is more efficient in terms of
number of adaptive steps needed to compute the solution, while it needs more number
of function evaluations with ode15s and significantly less than ode23t. The relatively
higher computational cost is due to the considerable bigger size of the Jacobian required
by the proposed scheme at each Newton iteration (here of size 2000 × 2000) compared
to the Jacobian processed by ode15s/ode23t (here of size 100×100). Thus, to speed
up the computations in a subsequent work, we aim in a future work, at exploiting the
arsenal of matrix-free methods in the Krylov subspace [224] such as Newton-GMRES
for the solution of such large-scale problems.

5.5.6 Comparison with the DeepXDE library: Lotka-Volterra ODEs
In this section, we compare the performance of the proposed scheme with a deep learning
PINN, as implemented in the DeepXDE library [93]. In particular, we consider a demo
of the DeepXDE library for the solution of the Lotka-Volterra ODEs reading:

dr

dt
= R

U
(2Ur − 0.04U2rp)

dp

dt
= R

U
(0.02U2rp− 1.06Up)

r(0) = 100
U

; p(0) = 15
U
,

(5.61)

where the parameters are set U = 200, R = 20 and the solution is sought in the time
interval [0, 1].

The reference solution were obtained with the ode15s solver with relative and abso-
lute tolerances set to 1E−14 and 1E−16, respectively.

For the considered demos, DeepXDE uses 3000 training residual points inside the
domain and 3000 points for testing the ODE residual, given by:

dr

dt
− R

U
(2Ur − 0.04U2rp) = 0

dp

dt
− R

U
(0.02U2rp− 1.06Up) = 0.

(5.62)

The neural network architecture employed in the DeepXDE demo is a deep feed-forward
one with 6 hidden layers with 64 neurons each, and hyperbolic tangent as activation
function. Furthermore, in order to enforce the prediction to be periodic and thus more
accurate, in the demo, the time input is first projected in a 7-dimensional feature layer,
given by:

t→
[︁
t sin(t) sin(2t) sin(3t) sin(4t) sin(5t) sin(6t)

]︁
(5.63)
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Finally, to hard constrain the DeepXDE to satisfy the initial conditions, the 2-dim output
y = (y1, y2) of the neural network is transformed as:

r̂ = 100
U

+ y1tanh(t), p̂ = 15
U

+ y2tanh(t). (5.64)

The default optimization procedure implements the Adam algorithm with a learning
rate 0.001 and 50, 000 iterations and then the optimization continues with the L-BFGS
algorithm in order to achieve a higher accuracy. Please note that the DeepXDE approach
is not adaptive and the solution is sought directly in the entire interval (i.e., without any
step-size adaptation).

Given the above, from a computational point of view, it is clear that it is much more
efficient to proceed in an adaptive-step employing a single-hidden layer RPNN with only
20 neurons (i.e., the only unknown weights are the ones that connect the hidden layer to the
output) that can be computed using a newton-scheme with pseudo-inverse of the Jacobian
vs. a DeepXDE neural network with (7×64+642×5+64×2+64×6+2) = 21, 442
unknowns (i.e., all the weights and biases need to be learned) that is trained by many
iterations of the Adam+L-BFGS algorithms.

Table 5.1: Lotka-Volterra[93] ODEs in the interval [0, 1], see Eq. (5.61). Mean compu-
tational time in seconds (s) and approximation errors (l2-norm, l∞-norm and MAE) for
(indicatively) the r component w.r.t. the reference solution computed with ode15s with
relative and absolute tolerances set to 1E−14 and 1E−16, respectively. The PIRPNN
solutions are computed with relative tolerances ranging from 1e−03 to 1e−06, and the
DeepXDE PINN solutions with 3, 4, 5, 6 hidden layers with 8, 16, 32, 64 neurons, re-
spectively.

TIME (s) l2-error l∞-error MAE
tol=1E−03 6.75E−02 2.11E−02 8.72E−04 1.22E−04

RPNN tol=1E−04 7.93E−02 2.33E−03 9.75E−05 1.38E−05
tol=1E−05 1.19E−01 1.50E−04 6.27E−06 8.92E−07
tol=1E−06 1.24E−01 1.00E−05 4.14E−07 6.29E−08
3× 8 6.39E+02 2.31E+01 6.50E−01 1.71E−01

DeepXDE 4× 16 4.04E+02 2.97E+00 1.24E−01 1.70E−02
5× 32 1.20E+03 3.95E−01 1.63E−02 2.32E−03
6× 64 1.73E+03 8.03E−03 2.99E−04 5.04E−05

In Table 5.1 we compare the performance of the two PIML schemes in terms of
mean computational time in seconds and l2, l∞ and MAE for (indicatively) for the
r component w.r.t. the reference solution computed with ode15s setting relative and
absolute tolerances to 1E−14 and 1E−16, respectively. In particular, for the proposed
scheme, we have selected a range of 4 relative tolerances, ranging from 1E−03 to 1E−06
for the PIRPNN, and we have varied the number of hidden layer and neurons of the
DeepXDE, using (a) 3 × (8); (b) 4 × 16; (c) 5 × 32 and (d) 6 × 64 as Deep network
architectures. The best result, in terms of numerical approximation accuracy, among the
different DeepXDE architectures is taken with the 6 × 64 structure. This corresponds
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to a comparable accuracy resulting from the proposed PIRPNN when relatively large
tolerances (reltol=1E−-03 or 1E−04). But in terms of computational times, the proposed
PIRPNN can obtain this approximation in just 7.93E−02 (s) versus the 1.73E+03 times
needed by the DeepXDE.

5.6 Discussion
We presented a PIRPNN to solve the forward problem of ODEs and index-1 DAEs. The
proposed scheme is a “numerical analysis-assisted" one, in the sense that the approach
is not only “Physics-informed", but the PIRPNN is sought to approximate the Picard-
Lindelöf integral, thus it is also an integration scheme with similar inspiration/sharing
similar concepts to RK methods. Furthermore, we have borrowed important specialized
techniques of numerical analysis, incorporating an adaptive step-size as in the traditional
stiff solvers, and a continuation method (a concept borrowed from the numerical bifur-
cation analysis theory) for providing good initial guesses to facilitate the convergence of
Newton iterations. Furthermore, in the case of sparse systems we exploit, state-of-the-art
numerical analysis methods such as the sparse QR decomposition. The numerical results
on six benchmark problems show that the scheme arises as a promising alternative to
well established ODE solvers for stiff problems, and appears to be much more efficient
in terms of the computational cost than deep-learning ML schemes for the solution of
ODEs.

Future work will be focused on the further development and application of the scheme
for solving large-scale systems of stiff ODEs, DAEs as well as PDEs. For this task, we
aim at integrating ideas from other numerical methods such as multistep methods, aided
by slow inertial manifolds such as CSP [125] and matrix-free methods in the Krylov-
subspace [224] in order to speed up computations.
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6 Solution of the Inverse
Problem for Complex Systems
I: The ML Framework

The solution of inverse problems is critical in complex systems as they involve deducing
underlying rules or models from observed data. Unlike forward problems, where the
system dynamics are known and predictions are made, inverse problems aim to recover
the governing equations, parameters, or structures of the system from observed outputs.
These challenges are compounded in high-dimensional and noisy environments, neces-
sitating robust methodologies to ensure accurate model identification and prediction.

In this chapter, we introduce the ML framework for the reconstruction of underlying
macroscopic laws, from microscopic high-fidelity data, and the analysis of tipping points
and rare events.

6.1 ML framework for the inverse problem
Given high dimensional spatio-temporal trajectory data acquired through microscopic
simulator, such as ABM simulations, the main steps of the framework are summarized
as follows (see also Figure 6.1, for a schematic):

a. Discover low-dimensional latent spaces, on which the emergent dynamics can be
described at the mesoscopic or the macroscopic scale.

b. Identify, via ML, black-box mesoscopic IPDEs, ODEs, or (after further dimen-
sional reduction), macroscopic mean-field SDEs.

c. Locate tipping points by exploiting numerical bifurcation analysis of the different
surrogate models.

d. Use the identified (NN-based) surrogate mean-field SDEs to perform rare-event
analysis (uncertainty quantification) for the catastrophic transitions. This is done
here in two ways: (i) performing repeated brute-force simulations around the tip-
ping points, (ii) for this effectively 1D problem, using explicit statistical mechanical
(Feynman-Kac) formulas for escape time distributions.
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6.1. ML framework for the inverse problem

In what follows, we present the elements of the methodology.

6.1.1 Challenges in solving the inverse problem
Addressing inverse problems in complex systems requires overcoming several challenges,
particularly in identifying appropriate coarse-scale variables, ensuring model robustness
and generalization, and quantifying uncertainty in predictions. Extracting meaningful
macroscopic variables from high-dimensional microscopic data is a key difficulty. ML
surrogates, like RPNNs, are instrumental in this process, as they effectively reduce
dimensionality and highlight the system’s essential features.

Microscopic
Simulator (e.g., ABM)

High-dimensional Data: 
𝑋𝑘 ∈ ℝ𝑁

Probability Density 
Function (pdf): 𝜌 𝑥, 𝑡

𝜌𝑡 = 𝐹(𝑥, 𝜌, 𝜌𝑥, 𝜌𝑥𝑥, 𝐼
+, 𝐼−, 𝑔)Data Collection

Statistical Moments:
𝑚0, 𝑚1, 𝑚2, …

Diffusion Maps 
Coordinates: 𝜓1, 𝜓2, …

𝑥𝑡 = 𝜇 𝑥𝑡, 𝑔 𝑑𝑡 + 𝜎 𝑥𝑡, 𝑔 𝑑𝑊𝑡

Rare Event Analysis

Controllers Design

Bifurcation Analysis

Locating Tipping Points

IPDE

SDECoarse-Scale Observables

Mesoscale field

Figure 6.1: Schematic of the ML-based approach for the multiscale modelling and analy-
sis of tipping points. At the first step, and depending on the scale of interest, we discover
via Diffusion Maps latent spaces using, mesoscopic fields (probability density functions
(pdf) and corresponding spatial derivatives) with the aid of Automatic Relevance Deter-
mination (ARD); or macroscopic mean-field quantities, such as statistical moments of
the probability density function. At the second step, on the constructed latent spaces,
we solve the inverse problem of identifying the evolutionary laws, as IPDEs for the
mesosopic field scale, or mean-field SDEs for the macroscopic scale. Finally, at the third
step, based on the constructed surrogate models, we perform system level analysis, such
as numerical integration at a lower computational cost, numerical bifurcation analysis for
the detection and characterization of tipping points, and rare event analysis (uncertainty
quantification) for the catastrophic transitions occurring in the neighborhood of the tip-
ping points.

Once the relevant variables are identified, accurately recovering the underlying dy-
namics and ensuring that the learned model generalizes beyond the training data become
critical tasks. This is particularly important for predicting rare events or behaviors near
tipping points, where small changes in parameters can lead to significant shifts in system
dynamics.

Training models on high-dimensional and often sparse data can lead to overfitting,
where the model captures noise rather than the true signal. To mitigate this, regular-
ization techniques such as dropout in neural networks or ARD in Gaussian processes
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are employed. These methods help stabilize learning by preventing the model from
becoming overly complex and ensuring it remains robust when exposed to new data.

Moreover, inverse problems are frequently ill-posed, meaning that different models
may explain the same data with similar accuracy. Quantifying the uncertainty in model
predictions is therefore essential for reliable interpretation and decision-making. Tech-
niques such as Bayesian inference and bootstrapping are used to assess the confidence
in the reconstructed models, providing a measure of the range and reliability of the
predictions made by the ML framework. This comprehensive approach ensures that the
solutions are not only accurate but also trustworthy and interpretable.

6.2 Discovering low-dimensional latent spaces.
The computational modeling of complex systems featuring a multitude of interacting
agents poses a significant challenge due to the enormous number of potential states that
such systems can have. Thus, a fundamental step, for the development of ROMs that
are capable of effectively capturing the collective behavior of ensembles of agents is the
discovery of an embedded, in the high-dimensional space, low-dimensional manifold
and an appropriate set of variables that can usefully parametrize it.

Let’s denote, by Xk ∈ RD, k = 1, 2, . . . the high-dimensional state of the ABM at
time t. The goal is then to project/map the high-dimensional data onto lower-dimensional
latent manifoldsM ⊂ RD, that can be defined by a set of coarse-scale variables. The
hypothesis of the existence of this manifold is related to the existence of useful ROMs
and vice versa.

Here, to discover such a set of coarse-grained coordinates for the latent space, we used
DMaps [129, 130] (see Section 6.4.2 for a brief description of the DMaps algorithm).

For both ABMs, we have some a priori physical insight for the mesoscopic descrip-
tion. For the financial ABM, one can for example use the pdf ρ(X)dx = P(X(t) ∈
[x, x+ dx]) across the possible states Xk in space. Thus, the continuum pdf constitutes
a spatially dependent mesoscopic field that can be modelled by an FP IPDE as explained
above. For the epidemic ABM, there is a physical insight on the macroscopic mean-field
description, which is the well-known mean-field SIRS model. Multiscale macroscopic
descriptions can also be constructed, including higher-order closures [12]. Alternatively,
one can also collect “enough" statistical moments of the underlying distribution such as
the expected value, variance, skewness, kurtosis, etc. Nevertheless, the collected statis-
tics may not automatically provide insight into their relevance in the effective dynamics
and a further feature selection/sensitivity analysis may be needed.

Focusing on a reduced set of coarse-scale variable is particularly relevant when there
exists a significant separation of time scales in the system’s dynamics. By selecting only
a few dominant statistics, one can effectively summarize the behavior of the system at a
coarser level.

The choice of the scale and details of coarse-grained description, leads to different
modelling approaches. For example, focusing at the mesoscale for the population density
dynamics, we aim at constructing a FP-level IPDE for the financial ABM, and a mean-field
SIR surrogate for the epidemic ABM. At an even coarser scale, e.g., for the first moment
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of the distribution, and taking into account the underlying stochasticity, a natural first
choice is the construction of a mean-field macroscopic SDE. Here, we construct surrogate
models via ML at both these distinct coarse-grained scales.

6.2.1 Diffusion Maps: a Dimension Reduction Approach
Diffusion Maps (DMaps), introduced by Coifman and Lafon in 2006 [129, 130], is a
manifold learning technique designed to reveal both linear and non-linear structures
in high-dimensional data. It provides an intrinsic embedding of the low-dimensional
manifold on which the data are assumed to lie.

DMaps employs a random walk over the data points, each considered as a node of
a graph, to uncover the geometric structure of the data by approximating the Laplace-
Beltrami operator on the manifold. In this graph, the edges between nodes represent the
transition probabilities from one data point to another. Given a data matrix X ∈ Rm×d,
wherem is the number of data points and d is the dimension of each point xi, the DMaps
algorithm constructs an affinity (kernel) matrixW , where each entrywij is computed as:

wij = exp
(︃
−||xi − xj ||2

2ϵ

)︃
, (6.1)

with ϵ being a scale parameter. Here, || · || represents the l2 norm.
To make the kernel matrix invariant to the sampling density and to approximate the

Laplace-Beltrami operator numerically, the following normalization is applied:

W̃ = P−1WP−1, Pii =
m∑︂

j=1
Wij . (6.2)

Next, the matrix D ∈ Rm×m is computed, with Dii =
∑︁m

j=1 W̃ ij , and a second
normalization is applied to obtain the row-stochastic matrix A:

A = D−1W̃ . (6.3)

We then perform the eigen-decomposition of A:

Aϕi = λiϕi, (6.4)

where the eigenvectors ϕi are ordered according to their corresponding eigenvalues
λi.

It is important to select eigenvectors that span linearly independent directions, often
referred to as non-harmonic modes. While spectral gaps typically indicate the data’s
multiscale structure, identifying the optimal “minimal" set of eigenfunctions is not always
straightforward. The non-harmonic eigenvectors can be selected using the local linear
regression algorithm proposed by Dsilva et al. [146]. This algorithm identifies the
non-harmonic eigenvectors by fitting eigenvectors ψi (for i > 1) as local linear functions
of preceding eigenvectors.

The details of this parsimonious algorithm are explained in the following section.
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6.3 Learning mesoscopic IPDEs via neural networks.
The identification of evolution operators of spatio-temporal dynamics using ML tools,
including deep learning and Gaussian processes, represents a well-established field of
research. The main assumption here is that the emergent dynamics of the complex system
under study on a domain Ω× [t0, tend] ⊆ Rd×R can be modelled by a system of saym
IPDEs in the form of:

∂u(i)(x, t)
∂t

≡ u(i)
t = F (i)(x,u,Du,D2u, . . . ,

. . . ,Dνu, I(i)
1 (u), I(i)

2 (u), . . . , ε),
(x, t) ∈ Ω× [t0, tend], i = 1, 2, . . . ,m,

(6.5)

where F (i), i = 1, 2, . . .m are m non-linear IPDE operators; u(x, t) = [u(1)(x, t), . . .
. . . , u(m)(x, t)] is the vector containing the spatio-temporal fields, Dνu(x, t) is the
generic multi-index ν-th order spatial derivative at time t:

Dνu(x, t) :=
{︃

∂|ν|u(x, t)
∂xν1

1 · · · ∂x
νd

d

, ν1, . . . , νd ≥ 0
}︃
,

where |ν| = ν1 + ν2 + · · ·+ νd,

(6.6)

I
(i)
1 , I

(i)
2 , . . . are a collection of integral features on subdomains Ω(i)

1 ,Ω(i)
2 , · · · ⊆ Ω:

I
(i)
j (u) =

∫︂
Ω(i)

j

K
(i)
j (x,u(x, t))dΩ, j = 1, 2, . . . ; (6.7)

K
(i)
j : Rd × Rm ↦→ Rd are nonlinear maps and ε ∈ Rp denotes the (bifurcation)

parameters of the system. The right-hand-side of the i-th IPDE depends on say, a
number of γ(i) variables and on bifurcation parameters from the set of features:

S(i) = {x,u(x, t),Du(x, t),D2u(x, t), . . . ,Dνu(x, t), I(i)
1 , I

(i)
2 , . . . , ε}. (6.8)

At each spatial point xq, q = 1, 2, . . . ,M and time instant ts, s = 1, 2, . . . , N , a single
sample point (an observation) in the setS(i) for the i-th IPDE can be described by a vector
Z

(i)
j ≡ Z

(i)
(q,s) ∈ Rγ(i) , with j = q + (s− 1)M . Here, we assume that such mesoscopic

IPDEs in principle exist, but they are not available in closed-form. Henceforth, we
aim to learn the macroscopic laws by employing an FNN, in which the effective input
layer is constructed by a finite stencil (sliding over the computational domain), mimicking
convolutional operations where the applied “filter" involves values of our field variable(s)
u(i) on the stencil, and returns featuresZ(i)

j ∈ S(i) of these variables at the stencil center-
point, i.e., spatial derivatives as well as (local or global) integrals (see Figure 6.2(a) for
a schematic). The FNN is fed with the sample points Z(i)

j ∈ Rγ(i) and its output is an
approximation of the time derivative ut.
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Figure 6.2: A Schematic representation of the neural networks used for constructive ML
assisted surrogates. (a) Feedforward Neural Network (FNN). the input is constructed by
convolution operations, i.e., a combination of sliding FD stencils, and, integral operators,
for learning mesoscopic models in the form of IPDEs (Eq. (6.5)); the inputs to the RHS
of the IPDE are the features in Eq. (6.8). (b) A schematic representation of the neural
network architecture, inspired by numerical stochastic integrators, used to construct
macroscopic models in the form of mean-field SDEs.

Remark on learning mean-field ODEs. The proposed framework can be also applied
for the simpler task of learning a system of m ODEs in terms of the m variables
u = (u(1), u(2), . . . , u(m)), thus learning i = 1, . . . ,m functions:

du(i)(t)
dt

= F (i)(u,p), t ∈ [t0, tend], (6.9)

where p ∈ Rk denotes the parameter vector.
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6.4 Feature selection

6.4.1 Feature selection with Automatic Relevance Determination.

Training the FNN with the “full” set of inputs S(i) ⊆ Rγ(i) , described in Eq. (6.8),
consisting of all local mean field values as well as all their coarse-scale spatial derivatives
(up to some order ν) is prohibitive due to the “curse of dimensionality". Therefore, one
important task for the training of the FNN is to extract a few “relevant”/dominant variable
combinations. Towards this aim, we used ARD in the framework of GPR [40].The
approach assumes that the collection of all observations Z(i) = (Z(i)

1 , Z
(i)
2 , . . . , Z

(i)
MN ),

of the features zl ∈ S(i), are a set of random variables whose finite collections have a
multivariate Gaussian distribution with an unknown mean (usually set to zero) and an
unknown covariance matrix K. This covariance matrix is commonly formulated by a
Euclidean distance-based kernel function k in the input space, whose hyperparameters
are optimized based on the training data. Here, we employ a RBF, which is the default
kernel function in Gaussian process regression, with ARD:

K
(i)
jh = k(Z(i)

j , Z
(i)
h ,θ(i)) = θ

(i)
0 exp

(︃
−1

2

γ(i)∑︂
l=1

zl,j − zl,h

θ
(i)
l

)︃
; (6.10)

θ(i) = [θ(i)
0 , θ

(i)
1 , . . . , θ

(i)
γ(i) ] are a (γ(i) + 1)–dimensional vector of hyperparameters.

Specifically, the optimal hyperparameter set θ̃(i) can be obtained by minimizing a negative
log marginal likelihood over the training data set (Z(i),Y(i)), with inputs the observation
Z(i) of the set S(i) and corresponding desired output given by the observation Y(i) of
the time derivative u(i)

t .

θ̃(i) = arg min
θ(i)
− log p(Y(i)|Z(i),θ(i)). (6.11)

As can be seen in equation (6.10), a large value of θl nullifies the difference between target
function values along the l-th dimension, allowing us to designate the corresponding zl

feature as “insignificant”. Practically, in order to build a reduced input data domain, we
define the normalized effective relevance weightsW (i)

r (·) of each feature input zl ∈ S(i),
by taking:

W̄
(i)
r (zl) = exp(−θ̃(i)

l ), W (i)
r (zl) = W̄

(i)
r (zl)∑︁

l W̄
(i)
r (zl)

. (6.12)

Thus, we define a small tolerance tol in order to disregard the components such that
W

(i)
r (zl) < tol. The remaining selected features (W (i)

r (zl) ≥ tol) can still successfully
(for all practical purposes) parametrize the approximation of the right-hand-side of the
underlying IPDE.
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6.4.2 Feature selection using Diffusion Maps with leave-one-out cross-
validation

For the selection of the lowest-dimensional embedding set of eigenfunction, a normalized
leave-one-out error, denoted as rk, is used for this selection and quantifies gradually
which eigenvectors are independent (non-harmonic) and which are not (harmonic). If
the number of non-harmonic eigenvectors is smaller than d the dimensionality reduction
is achieved. Furthermore, this algorithm can be applied for feature selection purpose.

For this purpose, given a set of ϕ1,ϕ2, . . . ,ϕk−1 ∈ RN Diffusion Maps eigenvectors,
for each element i = 1, 2 . . . , N of ϕk, we use a local linear regression model:

ϕk,i ≈ αk,i + βT
k,iΦk−1,i, i = 1, 2, . . . , N (6.13)

to investigate if ϕk is a dependent eigen-direction; Φk−1,i = [ϕ1,i, ϕ2,i, . . . , ϕ
T
k−1,i],

αk,i ∈ R and βk,i ∈ Rk−1. The values of parameters αk,i and βk,i are found solving an
optimization problem of the form:

α̂k,i, β̂k,i = argmin
α,β

∑︂
j ̸=i

K(Φk−1,i,Φk−1,j)(ϕk,j − (α+ βT Φk−1,j))2, (6.14)

where K is a kernel weighted function, usually the Gaussian kernel:

K(Φk−1,i,Φk−1,j) = exp
(︃
−||Φk−1,i − Φk−1,j ||

σ2

)︃
, (6.15)

where σ is the shape parameter. The final normalized leave-one-out cross-validation
error for this local linear fit is defined as:

rk =

⌜⃓⃓⎷∑︁N
i=1(ϕk,i − (α̂k,i + β̂

T

k,iΦk−1,i)2∑︁µ
i=1(ϕk,i)2 . (6.16)

For small values of rk, ϕk is considered to be dependent of the other eigenvectors and
hence as a harmonic or repeated eigen-direction, while large values of rk, suggest that
ϕk can serve as a new independent eigen-direction.

In practice, for feature selection, one can provide as inputs to the DMaps algorithm
the combined input-output domain. With this, we can seek the subsets of variables of the
input space that minimally parametrize the intrinsic embedding by quantifying it with a
total regression loss LT based on an MSE:

LT = (
µ∑︂

k=1
L2

ϕk
) 1

2 . (6.17)

Here, as Lϕj
, we define the regression loss for representing the intrinsic coordinate ϕj

when using s out of n selected input features:

Lϕk
= 1
N

N∑︂
i=1

(ϕk,i − g(·))2, (6.18)
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where g(·) is the output of the regressors with inputs the values of the features in the
ambient space and target values the eigenvectors ϕk.

6.5 Macroscopic mean-field SDEs via neural networks.
Here, we present our approach for the construction of embedded surrogate models in
the form of mean-field SDEs. Under the assumption that we are close (in phase- and
parameter space) to a previously located tipping point, we can reasonably assume that
the effective dimensionality of the dynamics can be reduced to the corresponding normal
form. We already have some qualitative insight on the type of the tipping point, based for
example on the numerical bifurcation calculations that located it (e.g., for the financial
ABM from the analytical FP IPDE, from our surrogate IPDE, or from the EF analysis
[28, 131]), while for the epidemic ABM from the EF analysis in [12]. For both these two
particular problem, we have found that the tipping point corresponds to a saddle-node
bifurcation.

Given the nature of the bifurcation (and the single variable corresponding normal
form) we identify a one-dimensional SDE, driven by a Wiener process, from data. We
note that learning higher-order such SDEs, or SDEs based on the more general Lévy
process and the Ornstein–Uhlenbeck process [243], is straightforward.

For a diffusion process with drift, say Xt = {xt, t > 0}, the drift, µ(xt) and
diffusivity σ2(xt) coefficients over an infinitesimally small-time interval dt, are given
by:

µ(xt) = lim
δt→0

1
δt
E(δxt|Xt = xt),

σ2(xt) = lim
δt→0

1
δt
E(δx2

t |Xt = xt),
(6.19)

where, δxt = xt+δt − xt. The 1D SDE driven by a Wiener process Wt reads:

dxt = µ(xt; ε)dt+ σ(xt; ε)dWt. (6.20)

Here, for simplicity, we assume that the one-dimensional parameter ε, enters into the
dynamics, via the drift and diffusivity coefficients. Our goal is to identify the functional
form of the drift µ(x, ε) and the diffusivity σ(x, ε) given noisy data close to the tip-
ping point via ML. For the training, the data might be collected from either long-time
trajectories or short bursts initialized at scattered snapshots, as in the EF framework.
These trajectories form our data set of input-output pairs of discrete-time maps. A data
point in the collected data set can be written as (x(k)

0 , h(k), x
(k)
1 ε(k)), where x(k)

0 and
x

(k)
1 measures two consecutive states at t(k)

0 and t
(k)
1 with (small enough) time step

h(k) = t
(k)
1 − t(k)

0 and ε(k) is the parameter value for this pair. Based on the above
formulation, going to x(k)

1 from x
(k)
0 by:

x
(k)
1 = x

(k)
0 +

∫︂ t
(k)
1

t
(k)
0

µ(xt; ε(k))dt+
∫︂ t

(k)
1

t
(k)
0

σ(xt; ε(k))dWt. (6.21)
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Here, for the numerical integration of the above equation to get stochastic realizations of
x

(k)
1 , we assume that the Euler-Maruyama numerical scheme can be used, reading:

x
(k)
1 ≈ x(k)

0 + h(k)µ(x(k)
0 ; ε(k)) + σ(x(k)

0 ; ε(k))∆W (k), (6.22)

where ∆W (k) = W
t

(k)
1
−W

t
(k)
0
∈ R is a one-dimensional random variable, normally

distributed with expected value zero and variance h(k).
Considering the point x(k)

1 as a realization of a random variable X1, conditioned on
x

(k)
0 and h(k), drawn by a Gaussian distribution of the form:

pX1(x(k)
1 ) = P

(︂
X1 = x

(k)
1 | X0 = x

(k)
0 , h(k)

)︂
∼

∼ N
(︃
x

(k)
0 + h(k)µ(x(k)

0 ; ε(k)), h(k)σ(x(k)
0 ; ε(k))2

)︃
,

(6.23)

we approximate the drift µ(x(k)
0 ; ε(k)) and diffusivity σ(x(k)

0 ; ε(k)) functions by simulta-
neously training two neural networks, denoted as µθ and σθ, respectively. This training
process involves minimizing the loss function:

L(θ|x(k)
0 , x

(k)
1 , h(k)) : =

∑︂
k

(x(k)
1 − x(k)

0 − h(k)µθ(x(k)
0 ; ε(k)))2

h(k)σθ(x(k)
0 ; ε(k))2

+

+ log|h(k)σθ(x(k)
0 ; ε(k))2|.

(6.24)

which is derived in order to maximize the log-likelihood of the data and where θ denotes
the trainable parameters (e.g., weights and biases of the neural networks µθ and σθ). A
schematic representation of the Neural Network, based on Euler-Maruyama, is shown in
Figure 6.2(b).

6.6 Rare event analysis and Tipping points

6.6.1 Locating tipping points via our surrogate models.
In order to locate the tipping point, based on either the mesoscopic (Integro-) PDE or
the embedded mean-field 1D SDE model, we construct the corresponding bifurcation
diagram in its neighborhood, using pseudo-arc-length continuation as implemented in
numerical bifurcation packages (see Appendix Section B.3). For the identified SDE, we
used its deterministic part, i.e., the drift term, to perform continuation. The required
Jacobian of the activation functions of the neural network is computed by symbolic
differentiation. Note that, for the SDE, this is just a validation step (we already know the
location and nature of the tipping point).
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6.6.2 Rare-event analysis/UQ of catastrophic shifts.
Given a sample space Ω, an index set of times T = {0, 1, 2, . . . } and a state space S,
the first passage time, also known as mean exit time or mean escape time, of a stochastic
process xt : Ω× T ↦→ S on a measurable subset A ⊆ S is a random variable which can
be defined as

τ(ω) := inf{t ∈ T | xt(ω) ∈ S \A}, (6.25)

where ω is a sample out of the space Ω. One can define the mean escape time from A,
which works as the expectation of τ(ω):

⟨τ⟩ := E[τ(ω)]. (6.26)

For a n-dimensional stochastic process, as it is the ABM under study, S is typically set
to be Rn, and A is usually a bounded subset of Rn. In the case of our local 1D SDE
model, the subset A reduces to an open interval (a, b), with the initial condition of this
stochastic process x0 also chosen in this interval.

We discuss two ways for quantifying the uncertainty of the occurrence of those
rare-events. The first, presented in the main text, involves direct computational “cheap”
temporal simulations of the 1D SDE, where one gets an empirical probability distribution;
the second, is a closed-form expression, based on statistical mechanics, for the mean
escape time (assuming an exponential distribution of escape times).
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7 Solution of the Inverse
Problem for Complex Systems
II: Case studies

In this chapter, we present three complex systems where inverse problems are addressed
using ML:

• FitzHugh-Nagumo PDE Model [35, 40]: This model is a simplification of the
Hodgkin-Huxley model for neuronal activity and is typically used to describe
excitable media. Here, this can describe the action potential propagation in un-
myelinated neurons. In our work, we use the Lattice Boltzmann Method (LBM) at
a mesoscale level to simulate the FitzHugh-Nagumo PDE. The goal is to recover
the underlying PDE from data generated by the LBM simulation and to construct
a coarse-scale bifurcation diagram.

• Event-Driven Financial Agent-Based Model [3, 28]: Here, we model a financial
market where agents interact based on mimesis, imitating the behavior of other
investors. This model captures the emergence of collective behavior, such as
market bubbles and crashes. The inverse problem involves reconstructing the
stochastic dynamics of the system and identifying coarse-grained variables that
describe large-scale market behavior. Additionally, we aim to predict rare events,
such as market crashes, by learning the probability of escaping from a stable state
near tipping points.

• Epidemic Spreading over Erdos-Renyi social Network [11, 12]: This model ad-
dresses the spread of infectious diseases over a random network. The challenge is
to predict the dynamics near critical transitions, such as the outbreak threshold. We
also investigate the probability of rare events, such as explosive outbreaks, using
a combination of ML-driven coarse-scale ODEs, correcting inaccurate mean-field
SIR model and 1d ML-assisted surrogate in the form of an SDE.
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7.1 Case study 1: A mesoscopic model of action potential
in unmyelinated neurons

As first case study, used for assessing the performance of the proposed scheme, we
selected the celebrated, well studied FitzHugh-Nagumo (FHN) model first introduced in
[244] to simplify the Hodgkin-Huxley model into a two-dimensional system of ODEs
to describe the dynamics of the voltage across a nerve cell. In particular, we consider
the FHN equations, which add a spatial diffusion term to describe the propagation of an
action potential as a traveling wave.

It is important to note that this is a toy model, as the PDE system is already well-
established. However, we use it to test the framework’s capability of reconstructing the
model when a reference is available for comparison. The mesoscopic Lattice Boltzmann
Method (LBM) serves as a mesoscopic simulator in this context.

The bifurcation diagram of the one-dimensional set of PDEs is known to have a
turning point and two supercritical Andronov-Hopf bifurcation points. In what follows,
we describe the model along with the initial and boundary conditions, and then we present
the D1Q3 Lattice Boltzmann model.

7.1.1 The Macroscale model: the FitzHugh-Nagumo Partial Differen-
tial Equations

The evolution of activation u : [x0, xend]× [t0, tend]→ R and inhibition v : [x0, xend]×
[t0, tend]→ R dynamics are described by the following two coupled nonlinear parabolic
PDEs:

∂u(x, t)
∂t

= Du ∂
2u(x, t)
∂x2 + u(x, t)− u(x, t)3 − v(x, t),

∂v(x, t)
∂t

= Dv ∂
2v(x, t)
∂x2 + ε(u(x, t)− α1v(x, t)− α0),

(7.1)

with homogeneous von Neumann Boundary conditions:

du(xend, t)
dx

= 0, dv(x0, t)
dx

= 0. du(xend, t)
dx

= 0, dv(x0, t)
dx

= 0. (7.2)

α0 and α1 are parameters, ε is the kinetic bifurcation parameter.
For our simulations, we have set x0 = 0, xend = 20, α1 = 2, α0 = −0.03, Du =

1, Dv = 4 and varied the bifurcation parameter ε in the interval [0.005, 0.955] [35]. For
our simulations, in order to explore the dynamic behavior, we considered various initial
conditions u0(x) = u(x, 0) and v0(x) = v(x, 0) selected randomly as follows:

u0(x) = w tanh
(︁
α(x− c)

)︁
+ β v0(x) = 0.12 · u0(x),

w ∼ U(0.8, 1.2), α ∼ U(0.5, 1) c ∼ U(2, 18), β ∼ U(−0.4, 0),
(7.3)

where U(a, b) denotes the uniform distribution in the interval [a, b].
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7.1.2 The D1Q3 Lattice Boltzmann model
The Lattice Boltzmann model serves as our fine-scale simulator. The statistical descrip-
tion of the system at a mesoscopic level uses the concept of distribution function f(r⃗, c⃗, t),
i.e., f(r⃗, c⃗, t)dr⃗dc⃗dt is the infinitesimal probability of having particles at location r⃗ with
velocities c⃗ at a given time t, for reducing the high-number of equations and unknowns.
Then, at this level, a system without an external force is governed by the Boltzmann
Transport equation [245]:

∂f

∂t
+ c⃗ · ∇f = R(f), (7.4)

where the termR(f) describes the rate of collisions between particles. In 1954, Bhatna-
gar, Gross and Krook (BGK) [245] introduced an approximation model for the collision
operator:

R(f) = 1
τ

(feq − f), (7.5)

where τ is the so-called relaxing time coefficient and feq denote the local equilibrium
distribution function.

In the LBM, Eq. (7.4)-(7.5) is collocated (assumed valid) along specific directions
c⃗i on a lattice:

∂fi

∂t
+ c⃗i · ∇fi = 1

τ
(feq

i − fi) (7.6)

and then Eq. (7.6) is discretized with a time step ∆t as follows:

fi(r⃗ + c⃗i∆t, t+ ∆t) = fi(r⃗, t) + ∆t
τ

(feq
i − fi). (7.7)

One common interpretation of Eq. (7.7) is to think about the distribution functions as
fictitious particles that stream and collide along specified linkages of the lattice. Lattices
are usually denoted by the notation DnQm, where n is the spatial dimension of the
problem and m refer to the number of connections of each node in the lattice. The node
in the lattices coincide with the points of a spatial grid with a spatial step ∆x.

Here, in order to estimate the coarse-scale observables u and v of the FHN dynamics,
we considered the D1Q3 implementation, i.e., we used the one-dimensional lattice with
three velocities ci: particles can stream to the right (c1 = ∆x

∆t ), to the left (c−1 = −∆x
∆t )

or staying still on the node (c0 = 0). Also, we assume the coexistence of two different
distribution functions for describing the distribution of the activator particles fu

i and the
distribution of the inhibitor particles fv

i , where the subscript i refer to the associated
direction. Therefore, one can figure that at each instant there are six fictitious particles
on each node of the lattice: two resting on the node (with distribution fu

0 and fv
0 ), two

moving on the left (with distribution fu
−1 and fv

−1) and two moving on the right (with
distribution fu

1 and fv
1 ). The relation between the above distributions and the coarse-

scale density u and v is given by the zeroth moment (across the velocity directions) of
the overall distribution function:

u(xj , tk) =
1∑︂

i=−1
fu

i (xj , tk), v(xj , tk) =
1∑︂

i=−1
fv

i (xj , tk). (7.8)
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Figure 7.1: Reference bifurcation diagram of the FHN PDEs with respect to ε as com-
puted with FD and N = 200 points. (a) Mean values < u > for stable and unstable
branches, (b) Mean values < v > for stable and unstable branches. Andronov-Hopf
Point: HPε=0.01827931. Turning Point: TPε=0.94457768.

The coexistence of multiple distributions renders necessary to introduce weights ωi for
the connections in the lattice that should satisfy the following properties:

(a) Normalization ω0 + ω1 + ω−1 = 1

(b) Symmetry ω1 − ω−1 = 0

(c) Isotropy:

(c.1) ω0c
2
0 + ω1c

2
1 + ω−1c

2
−1 = c2

s

(c.2) ω0c
3
0 + ω1c

3
1 + ω−1c

3
−1 = 0

(c.3) ω0c
4
0 + ω1c

4
1 + ω−1c

4
−1 = 3c4

s,

where cs is the speed of sound in the lattice. Thus, the weights are equal to ω±1 = 1/6
for the moving particles and ω0 = 4/6 for the resting particle. The resulting speed of
sound in the lattice is cs =

√
3∆x

3∆t .
As the BGK operator (7.5) suggests, one key step in applying LBM for solving

reaction-advection-diffusion PDEs is to determine the local equilibrium distribution
function feq associated to a given model. For particles with macroscopic density ρ that
move in a medium macroscopic velocity u⃗m, the Maxwell distribution is:

feq(c⃗) = ρ

(2πRT )d/2 exp
(︃
− (c⃗− u⃗m)2

2RT

)︃
=

= ρ

(2πRT )d/2 exp
(︃
− c⃗ · c⃗

2RT

)︃
exp
(︃
−−2c⃗ · u⃗m + u⃗m · u⃗m

2RT

)︃
,

(7.9)

where d is the spatial dimension of the problem, T is the temperature and R is the
universal gas constant. The exponential in Eq. (7.9) can be expanded using Taylor series,
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Figure 7.2: Contour plot of the l2 norms of the convergence of the solutions as computed
with FD with respect to the size of the grid N computed as ||uN − u2N ||l2 , ||vN −
v2N ||l2 . The convergence error was computed on 1001 grid points, using linear piecewise
interpolation. (a) upper branch for u, (b) upper branch for v, (c) lower branch for u, (d)
lower branch for v.

ignoring terms of order O(u3) and higher, thus obtaining:

feq(c⃗) = ρω(c⃗)
[︃
1 + 2c⃗ · u⃗m − u⃗m · u⃗m

2c2
s

+ (c⃗ · u⃗m)2

2c4
s

]︃
, (7.10)

with ω(c⃗) = (2πRT )−d/2exp
(︃
− c⃗ · c⃗

2RT

)︃
and RT = c2

s, with cs speed of the sound.

Now, since the FHN PDEs are only diffusive, i.e., there are no advection terms, the
medium is stationary (u⃗m = 0) and the equilibrium distribution function, discretized on
the lattice direction ci, is simplified in:

fu,eq
i (xj , tk) = ωiu(xj , tk), i = −1, 0, 1
fv,eq

i (xj , tk) = ωiv(xj , tk).
(7.11)

Now, in the FHN model, we need to consider also reaction terms Rl
i and so finally,

the time evolution of the microscopic simulator associated to the FHN on a givenD1Q3
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lattice is:

f l
i (xj+i, tk+1) = f l

i (xj , tk)+ ∆t
τ l

(f l,eq
i (xj , tk)−f l

i (xj , tk))+∆tRl
i(xj , tk), l ∈ {u, v}

(7.12)
where the superscript l denotes the activator u and the inhibitor v and the reaction terms
Rl

i are directly derived by:

Ru
i (xj , tk) = ωi(u(xj , tk)− u3(xj , tk)− v(xj , tk)),

Rv
i (xj , tk) = ωi ε(u(xj , tk)− α1v(xj , tk)− α0).

(7.13)

Finally, the relaxation coefficient
∆t
τ l

is related to the macroscopic kinematic viscosity
Dl of the FHN model and in general depends on the speed of the sound cs associated to
the lattice [246]:

∆t
τ l

= 2
1 + 2

c2
s∆tD

l
= 2

1 + 6Dl ∆t
∆x2

. (7.14)

7.1.3 Numerical bifurcation analysis of the FHN PDEs

For comparison purposes, we first constructed the bifurcation diagram of the FHN PDEs
using central FD.
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Figure 7.3: Coarse initial conditions for (a) u and (b) v for the training. Every dot denotes
a point whose ε and mean u (or v) were used for input data. Red dots are training points,
blue points are test points. The grid is spanned with Chebychev-Gauss-Lobatto points
for epsilons in the interval [0.005, 0.995] and the initial condition are randomly selected
as in Eq. (7.3)

The discretization of the one-dimensional PDEs in M points with second-order
central FD in the unit interval 0 ≤ x ≤ 20 leads to the following system of 2(M − 2)
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non-linear algebraic equations ∀xj = (j − 1)h, j = 2, . . .M − 1, h = 1
M−1 :

Fu
j (u, v) = Du

h2 (uj+1 − 2uj + uj−1) + uj − u3
j − vj = 0

F v
j (u, v) = Dv

h2 (vj+1 − 2vj + vj−1) + ε(uj − α1vj − α0) = 0.

At the boundaries, we imposed homogeneous von Neumann boundary conditions.
The above 2(M − 2) set of non-linear algebraic equations is solved iteratively using

Newton’s method. The non-null elements of the Jacobian matrix are given by:

∂Fu
j

∂uj−1
= Du

h2 ;
∂Fu

j

∂uj
= −Du 2

h2 − 3u2
j ;

∂Fu
j

∂uj+1
= Du

h2 ;
∂Fu

j

∂vj
= −1

∂F v
j

∂vj−1
= Dv

h2 ;
∂F v

j

∂vj
= −Dv 2

h2 − εα1vj ;
∂F v

j

∂vj+1
= Du

h2 ;
∂F v

j

∂uj
= ε.

To trace the solution branch along the critical points, we used the pseudo arc-length-
continuation method ([221, 222, 225]). This involves the parametrization of u(x), v(x)
and ε(x) by the arc-length s on the solution branch. The solution is sought in terms
of ũ(x, s), ṽ(x, s) and ε̃(s) in an iterative manner, by solving until convergence the
following augmented system:⎡⎣∇uF u ∇vF u ∇εF u

∇uF v ∇vF v ∇εF v

∇uN ∇vN ∇εN

⎤⎦⎡⎣du(n)(x, s)
dv(n)(x, s)
dε(n)(s)

⎤⎦ = −

⎡⎣F u(u(n)(x, s), v(n)(x, s), ε(n)(s))
F v(u(n)(x, s), v(n)(x, s), ε(n)(s))
N(u(n)(x, s), v(n)(x, s), ε(n)(s))

⎤⎦ ,
(7.15)

where

∇εF u =
[︂

∂F u
1

∂ε
∂F u

2
∂ε . . .

F u
N

∂ε

]︂T

,∇εF v =
[︂

∂F v
1

∂ε
∂F v

2
∂ε . . .

F v
M

∂ε

]︂T

,

and

N(u(n)(x, s), v(n)(x, s), ε(n)(s)) =

(u(n)(x, s)−ũ(x, s)−2)T · (ũ(x)−2 − ũ(x)−1)
ds

+

(v(n)(x, s)−ṽ(x, s)−2)T · (ṽ(x)−2 − ṽ(x)−1)
ds

+

(ε(n)(s)− ε̃−2) · (ε̃−2 − ε̃−1)
ds

− ds,

where (ũ(x)−2,ṽ(x)−2) and (ũ(x)−1,ṽ(x)−1) are two already found consequent solutions
for ε̃−2 and ε̃−1, respectively and ds is the arc-length step for which a new solution around
the previous solution (ũ(x)−2, ṽ(x)−2, ε̃−2) along the arc-length of the solution branch
is being sought. The corresponding reference bifurcation diagram is shown in Figure
7.1. In this range of values, there is an Andronov-Hopf bifurcation at ε ≈ 0.018497 and
a fold point at ε ≈ 0.95874.
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(a) (b) (c)

(d) (e) (f)

Figure 7.4: Approximation accuracy in the test data without feature selection, as obtained
with FNNs (a)-(c) and RPNNs (d)-(f). Contour plot of the absolute values of differences
in space and time, of, indicatively |ut(x, t) − ût(x, t)| for characteristic values of ε:
(a) and (b) ε = 0.0114 near the Andronov-Hopf point, (c), (d) ε = 0.4, (e) and (f)
ε = 0.9383 near the turning point.

7.1.4 Numerical bifurcation analysis from mesoscopic LBM simulations
We collected transients of u(x, t) and v(x, t) with a sampling rate of 1s, from 10 different
random sampled initial conditions for 40 different values for the bifurcation parameter ε.
In particular, we created a grid of 40 different ε in [0005, 0.955] using Gauss-Chebychev-
Lobatto points, while the 10 initial conditions are sampled according to Eq.(7.3).

Figure 7.3 depicts the total of 400 training initial conditions. Thus, we end up with
a dataset consisting of 40 (values of ε) × 10 (initial conditions) × 448 (time points
ignoring the first 2s of the transient) × 40 (space points) ≃ 7.168.000 data points.
For learning the coarse-grained dynamics and construct the corresponding bifurcation
diagram, we trained two FNNs and two single-layer RPNNs (one for each one of the
variables u and v). The FNNs were constructed using two hidden layers, with 12 units in
each layer. Hidden units were employed with the hyperbolic tangent sigmoid activation
function, while the regularization parameter was tuned and set λ = 0.01. For the training
of the FNNs, we used the Deep Learning toolbox of MATLAB 2021a on an Intel Core
i5-8265U with up to 3.9 GHz frequency with a memory of 8 GB.
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Figure 7.5: Reconstructed bifurcation diagrams from the Lattice Boltzmann simulations
of the FHN dynamics with respect to ε with FNNs and RPNNs with and without feature
selection. (a) Mean values < u > for stable and unstable branches; the inset zooms near
the Andronov-Hopf bifurcation point (b) zoom near the turning Point for< u >, (c) Mean
values < v > for stable and unstable branches; the inset zooms near the Andronov-Hopf
bifurcation point, (d) zoom near the turning Point for < v >.

Numerical bifurcation analysis without feature selection

Table 7.1 summarizes the performance of the two schemes on the test data set. As

test set
MSE (u) l∞ (u) MSE (v) l∞ (v)

FNN 7.90E−09 2.26E−02 1.56E−09 6.63E−03
FNN(FS) 5.39E−08 2.93E−02 1.16E−08 7.65E−03
RPNN 2.91E−08 2.98E−02 4.50E−10 2.22E−03

RPNN(FS) 7.10E−08 3.07E−02 1.73E−08 1.60E−02

Table 7.1: Mean-square error (MSE) and l∞ errors between the predicted ût and v̂t from
the FNNs and RPNNs and the actual time derivatives ut and vt without and with feature
selection (FS).

it is shown, for any practical purposes, both schemes resulted to equivalent numerical
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Figure 7.6: (a) and (b): The three parsimonious DMaps coordinates for ε = 0.01114
near the Andronov-Hopf point, respectively. (c) and (d): the two parsimonious DMaps
coordinates for ε = 0.4010. (e) and (f): the two parsimonious DMaps coordinates for
ε = 0.9383 near the turning point. Colors represent ut ((a), (c), (e)) and vt ((b), (d), (f)).

accuracy for all metrics. For the FNNs, the training phase (using the deep-learning
toolbox in Matlab R2020b) required ∼ 1000 epochs and ∼ 4 hours, with the minimum
tolerance set to 1E-07.

Differences between the predicted ût(x, t) and the actual values of the time derivatives
ut(x, t) for three different values of ε are shown in Figure 7.4(a)-(c) when using FNNs
and in Figure 7.4(d)-(f) when using RPNNs. Note ut is reported indicatively, v̂t(x, t)−vt

obtains similar results.
Instead, for the proposed RPNN scheme, the training phase, i.e., the solution of the

least-squares problem with regularization, required around 8 minutes, thus resulting in a
training phase of at least 20 times faster than that of the FNNs.
After training, we used the FNNs and RPNNs to compute with FD the quantities required
for performing the bifurcation analysis (see Eq.(7.15)), i.e.:

∂F̂
u

∂uj
= F̂

u
(uj , vj , ε)− F̂

u
(uj + δ, vj , ε)

2δ ; ∂F̂
u

∂vj
= F̂

u
(uj , vj , ε)− F̂

u
(uj , vj + δ, ε)

2δ
∂F̂

v

∂uj
= F̂

v
(uj , vj , ε)− F̂

v
(uj + δ, vj , ε)

2δ ; ∂F̂
v

∂vj
= F̂

v
(uj , vj , ε)− F̂

v
(uj , vj + δ, ε)

2δ
∂F̂

u

∂ε
= F̂

u
(uj , vj , ε)− F̂

u
(uj , vj , ε+ δ)

2δ ; ∂F̂
v

∂ε
= F̂

v
(uj , vj , ε)− F̂

v
(uj , vj , ε+ δ)

2δ ,

with δ = 1E-06. The reconstructed bifurcation diagrams are shown in Figure 7.5.
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(a) (b) (c)

(d) (e) (f)

Figure 7.7: Approximation accuracy in the test data with feature selection, as obtained
with the FNNs and RPNNs. Contour plot of the absolute values of differences in space
and time, of, indicatively, |ut(x, t) − ût(x, t)| for characteristic values of ε: (a) and (b)
ε = 0.0114 near the Andronov-Hopf point, (c), (d) ε = 0.4, (e) and (f) ε = 0.9383 near
the turning point.
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Using the FNNs, we estimated the Andronov-Hopf point at ε ≈ 0.0191 and the
turning point at ε ≈ 0.9713; using the RPNNs, we estimated the Andronov-Hopf point
at ε ≈ 0.0193 and the turning point at ε ≈ 0.9696. We approximated the same points
using the FD scheme in the previous section at ε ≈ 0.0183 for the Andronov-Hopf point
and at ε ≈ 0.9446 for the turning point. Hence, compared to the FNNs, the RPNNs
approximated slightly better the reference turning point.

Numerical bifurcation analysis with feature selection

We used Diffusion Maps (setting the width parameter of the Gaussian kernel toσ = 10) to
identify the three parsimonious leading eigenvectors as described in section 6.4.2. We de-
note them as ϕ1, ϕ2, ϕ3. The three parsimonious DMaps coordinates for different values
of the parameter ε are shown in Figure 7.6. For ε = 0.114 that is close to the Andronov-
Hopf point, the embedded space is a two-dimensional “carpet” in the three-dimensional
space. The oscillatory behavior leads to different values of the time derivative which
can be effectively parametrized as shown by the coloring of the manifold (Figures 7.6(a),
7.6(b)). For ε = 0.4010 and ε = 0.9383, the embedded space is a one dimensional line,
since time derivatives converges rapidly to zero (Figures 7.6(c),7.6(e),7.6(d) and 7.6(f)).
Based on the feature selection methodology, the “good” subsets of the input data domain
are presented in Table 7.2. As expected, the best candidate features are the (u, v, uxx)
for ut and (u, v, vxx) for vt, which are the only features that indeed appear in the closed
form of the FHN PDEs.

ut = (ϕu
1 , ϕ

u
2 , ϕ

u
3 ) vt = (ϕv

1, ϕ
v
2, ϕ

v
3)

Features Total Loss Features Total Loss
1d (u) 4.3E-03 (u) 7.6E-03
2d (u, v) 6.37E-06 (u, v) 1.91E-05
3d (u, v, uxx) 2.77E-07 (u, v, vxx) 6.29E-07
4d (u, v, ux, uxx) 1.03E-07 (u, v, vx, vxx) 1.34E-07

Table 7.2: The “best” set of variables that effectively parametrize the intrinsic coordinates
((ϕu

1 , ϕ
2
2, ϕ

u
3 ) and (ϕv

1, ϕ
v
2, ϕ

v
3)) and the corresponding sums of total losses across all the

values of the bifurcation parameter ε.

Finally, we repeated the same steps, but now using as inputs in the FNNs and RPNNs
the reduced input domain as obtained from the feature selection process. Table 7.1
summarizes the performance of the schemes on the test set. Figures 7.7(a)-(c) and
7.7(d)-(f) illustrate the norms of the differences between the predicted from the FNNs
and RPNNs and the actual time derivatives of, indicatively, u.

Hence, as it is shown, the proposed feature selection approach based on the parsimo-
nious Diffusion Maps revealed correctly the structure of the embedded PDEs in the form
of:

∂u(x, t)
∂t

= F̂
u
(u(x, t), v(x, t), uxx(x, t), ε),

∂v(x, t)
∂t

= F̂
v
(u(x, t), v(x, t), vxx(x, t), ε)

(7.16)
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where F̂
u

and F̂
v

are the outputs of the FNNs (or the RPNNs). The constructed
bifurcation diagram with feature selection is shown in Figure 7.5. Using the FNNs, we
estimated the Andronov-Hopf point at ε ≈ 0.0195 and the turning point at ε ≈ 0.9762.
Using the RPNNs, we estimated the Andronov-Hopf point at ε ≈ 0.0192 and the turning
point at ε ≈ 0.9752.

7.2 Case study 2: Tipping points in a financial market with
mimesis.

ABMs enable the creation of digital twins for financial markets, thus offering a valuable
tool in our arsenal for explaining out-of-equilibrium phenomena such as “bubbles" and
crashes [5] that emerge mainly due to positive feedback mechanisms of imitation and
herding of investors that lead to an escalating increase of the demand. While the practical
application of ABMs for providing predictions about real-world financial instabilities
remains an ongoing area of research, they can be used to shed light on the mechanisms
that lead to such crises [5].
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Figure 7.8: Stochastic Agent-based model simulations of the two case studies. (a)-(c)
traders in a simple financial market. (a) Trajectories for different values of the parameter
g. (b) Probability density function (pdf) evolution for g = 45; (c) pdf evolution for
g = 47 (past the tipping point); Insets show the blow up of the pdf; the blue curve depicts
the pdf just a few time steps before the explosion and the red curve depicts the pdf at the
financial “bubble”. (d)-(f) Stochastic simulations of the epidemic ABM. Trajectories of
the densities [S] in (d), [I] in (e) and [R] in (f), for different values of the parameter λ.

Towards to this aim, our first illustrative example is an event-driven ABM approxi-
mating the dynamics of a simple financial market with mimesis proposed by Omurtag
and Sirovich [3]. The ABM describes the interactions of a large population of, say N ,
financial traders. Each agent is described by a real-valued state variableXi(t) ∈ (−1, 1)
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associated to their tendency to buy (positive values) or sell (negative values) stocks in
the financial market according to constantly updated financial news, as well as to their
interactions with the other traders [3]. The i–th agent acts, i.e., buys or sells, only when
its state Xi crosses one of the decision boundaries/thresholds X = ±1. As soon as an
agent i buys or sells, the agent’s state is forthwith reset to zero.

In the absence of any incoming good news I+i or bad news I−i , the preference state
exponentially decays to zero with a constant rate γ. Thus, each agent is governed by the
following SDE:

dXi(t) = −γXi(t)dt+ dI+i (t) + dI−i (t), |Xi| < 1. (7.17)

The effect of information arrivals I±i (t) is represented by a series of instantaneous
positive/negative “discrete jumps” of size ϵ±, arriving randomly at Poisson distributed
times tk+ , k+ = 1, 2, . . . and tk− , k− = 1, 2, . . . , with average rates of arrival ν+(t)
and ν−(t), respectively. Furthermore, the dynamics of each agent are driven by arrivals
of two types of information: exogenous (ex) (e.g., publicly available financial news), as
well as an endogenous (en) stream of information arising from the social connections of
the agents, so that

ν± = ν±
ex + ν±

en. (7.18)

A tunable parameter g embodies the strength of mimesis: the extent to which arriving
information affects the willingness or apprehension of the agent to buy or sell. For this
model, the term ν±

en is set to be the same for all agents and is influenced by the perceived
overall buying R+(t) and selling R−(t) rates:

ν±(t) = ν±
ex + gR±(t), (7.19)

where R±(t) are defined as the fraction of agents buying or selling per unit of time ∆t:

R±(t) = number of agents buying/selling
∆t · total number of agents

=

= 1
N∆t

∫︂ t+∆t

t

δ(s− T±
i )ds,

(7.20)

where T±
i are the instants at which the i-th agent crosses the decision boundary ±1.

In Figure 7.8(a), we depict the mean preference state for N = 50, 000 agents for
values of the mimesis strength g = 35, 40, 42, 45, 46, 47. In Figures 1(b)-1(c), we
depict representative trajectories of the time evolution of the agent probability density
distribution (pdf) for g = 45 and g = 47, respectively. We see that the simulations
exhibit a tipping point that arises at a parameter value g ≈ 45.5. At the neighborhood
of this tipping point, due to the inherent stochasticity of the mimetic trading process,
emanate “financial bubbles", where all agents hurry to buy assets (see Figure 7.8(a)).
The ABM model also predicts financial crashes in regimes of the phase-space where the
mean value of the mesoscopic density field is negative, and the agents rush to sell (for
more details see [28]).
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A concise analytical mesoscopic description of the population dynamics was derived
by Omurtag and Sirovich in [3]. The model, reported here, is a Fokker-Planck-type (FP)
IPDE for the agent pdf ρ(x, t), given by:

∂ρ(t, x)
∂t

= 1
2σ

2(t)∂
2ρ(t, x)
∂x2 + ∂(µ(t, x)ρ(t, x))

∂x
+

+ (J+ + J−)δ(x).
(7.21)

where µ and σ are drift and diffusivity time-dependent parameters, respectively, δ is the
Dirac delta and J± are integral operators accounting for the agents crossing the decision
boundaries.

Further details about the derivation of the FP equation in Eq. (7.21) are presented in
the next section.

7.2.1 Mesoscopic dynamics: the analytically derived Fokker-Planck-
type IPDE

In order to obtain a concise description at the level of population dynamics, Omurtag and
Sirovich derived a mesoscopic Fokker-Plank-type (FP) IPDE [3] (a continuity equation)
for the agent pdf ρ(t, x), where the spatial variable corresponds to the preference state
of the agents, i.e., x ≡ X . For the particular problem, at the limit of infinitely many
agents and averaged along many possible trajectories, the continuity equation in terms of
a probability flux J(t, x) and a source Q(t, x) reads:

∂ρ(t, x)
∂t

= −∂J(t, x)
∂x

+Q(t, x),

with J(t, x) = −1
2σ

2 ∂ρ(t, x)
∂x

− µρ(t, x),
(7.22)

where, if we denote the fluxes at the boundaries J(t,±1) = J±, the source Q(t, x) can
be set to be Q(t, x) = (J+ + J−)δ(x) to compensate for the creation/disappearance of
density at the boundaries.

The above equation can be written as:

∂ρ(t, x)
∂t

= 1
2σ

2(t)∂
2ρ(t, x)
∂x2 + ∂(µ(t, x)ρ(t, x))

∂x
+

+ (J+ + J−)δ(x).
(7.23)

In the above, σ2(t) is the time-dependent diffusivity coefficient given by:

σ2(t) = ν+(ϵ+)2 + ν−(ϵ−)2, (7.24)

µ is the time-dependent, space-dependent drift coefficient, given by:

µ(t, x) = γx− ν+ϵ+ − ν−ϵ−. (7.25)

J± denote the inflow and outflow through the boundaries that are restored/re-injected at the
origin through a Dirac δ(x) in Eq. (7.23), in order to maintain agent conservation. Indeed,
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since ρ is a probability distribution, the equation has also to satisfy the normalization
property: ∫︂ 1

−1
ρ(t, x)dx = 1, ∀t; (7.26)

it is convenient to consider homogeneous Dirichlet boundary conditions ρ(±1, t) = 0
and the agents there instantaneously reset back to X = 0. In addition, the fluxes at the
boundaries J(t,±1) = J± are given by:

J±(t, x) = ∓1
2σ

2 ∂ρ(t, x)
∂x

⃓⃓⃓
x=±1

, (7.27)

reflecting the resetting process of agents that cross the boundaries.
Besides, in order to solve/integrate the Eq. (7.23), one has to find algebraic clo-

sures for the time-evolving diffusivity σ and drift µ coefficients. In [3], a mean field
approximation of the buying/selling rates was proposed:

R± = ±ν±
∫︂ ±1

±1∓ϵ±
ρ(x, t)dx. (7.28)

Finally, based on Eq. (7.19): and Eq. (7.28), one obtains:

ν± = ν±
ex

1− g
∫︁ ±1

±1∓ϵ±
ρ(x, t)dx

, (7.29)

from which one can retrieve at each time instance t, the coefficients µ(t) and σ2(t) of
the FP model, as defined in Eqs. (7.24)-(7.25).

The designation “Fokker-Planck" notwithstanding, it is important to restate that the
above approximation is an IPDE with space-dependent coefficients.

7.2.2 ML mesoscopic IPDE surrogate for the financial ABM.
In [28], it was shown that the analytical ROM IPDE in Eq. (7.21) non-trivially underes-
timates the location of the tipping point with respect to the parameter g, defined in Eq.
(7.19).

Here, we show how one can achieve a better approximation through data-driven
black-box surrogates. For learning the right-hand-side operator of the IPDE, we have
considered the relevant features that we found with ARD (see Sections 6.4.1 and 7.2.3).
We used the following (black-box) mesoscopic model for the dynamic evolution of the
density ρ:

∂ρ(x, t)
∂t

= F (x, ρ(x, t), I+, I−,
∂ρ(x, t)
∂x

,
∂2ρ(x, t)
∂x2 ; g) (7.30)

where I+, I− are integrals in a small neighborhood of the boundaries (see Section
7.2.3).Here, for learning the RHS of the black-box IPDE (7.30), we implemented two
different structures, namely (a) an FNN; and (b) a RPNN in the form of RF [158].
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Figure 7.9: Numerical results for the financial ABM. (a) Reconstructed bifurcation
diagram w.r.t. g obtained with the mesoscopic IPDE surrogate FNN and RFF models;
the one computed from the analytical Fokker-Planck (FP) IPDE, see Eq. (7.21), and the
one constructed with the Equation-free (EF) approach are also given[28, 131]. Dashed
lines (open circles) represent the unstable branches. (b)-(c) ABM-based-simulation-
and Diffusion Maps- (DMaps) driven observables; (b) The first DMaps coordinate ψ1
is plotted against the mean preference state X̄ . In the inset, the buying rate R+ plotted
against the mean preference state (X̄). (c) The estimated residual rk based on the local
linear regression algorithm [146]. (d) The effective bifurcation diagram based on the
drift component of the identified mean-field macroscopic SDE in ψ1. (e-f) Histograms
of escape times obtained with simulations of 10,000 stochastic trajectories for (e) the
SDE model for g = 45.25 (blue histogram) and g = 43.75 (red histogram) (f) the full
ABM at g = 45.25.

The two alternative ML schemes, on the test set, obtain similar performance in terms
of accuracy. In terms of the Mean Absolute Error (MAE) the FNN got 1.10E−04 and
the RFF got 1.09E−04. For MSE, the FNN got 2.60E−08 and the RFF got 2.53E−08.
For the Regression Pearson correlation R, FNN got 0.9866 and RFF 0.9873. The main
notable difference between the two schemes is in the computational time needed to

171



7.2. Case study 2: Tipping points in a financial market with mimesis.

perform the training, since remarkably, the training of the RFF, which required 26.06
(s), turned out to be at least 50 times faster than the one required for the deep-learning
scheme, which required 1488.33 (s).

Details on Learning the Integro- Partial Differential Equation for the finance ABM.
ABM simulations were performed using N = 50, 000 agents, with ν+

ex = ν−
ex = 20,

γ = 1, ϵ− = −0.072, ϵ+ = 0.075. The mimetic strength g is our bifurcation parameter.
For the data set, we selected 41 equally-spaced points in the range g ∈ [30, 50] and for each
of the values of g, we randomly generated 1000 different initial profiles ρ0, as Gaussian
distributions ρ0 ∼ N (m̃0, s̃

2
0) with varying mean m̃0 and variance s̃2

0. The initial m̃0 and
s̃0 were uniformly randomly sampled as m̃0 ∼ U([−0.3, 0.3]), s̃0 ∼ U([0.3, 0.5]). The
initial state of the agents is sampled from the initial distribution ρ0, creating a consistent
microscopic realization. At each time step, as the agents dynamically evolve, to estimate
the corresponding coarse-grained density profile, we used 81 equally-spaced bins, with
equally-spaced centers xi ∈ [−1, 1]. Since we are dealing with a stochastic model,
in order to generate smooth enough profiles for the spatial derivatives, for each fixed
initial condition, we ran 100 random stochastic realizations, and we averaged along the
generated copies of the density field. Then to further smooth out the computed densities,
we applied a weighted moving average smoothing ρi as ρ⋆

i = 2ρi+ρi−1+ρi+1
4 . (i denotes

spatial mesh points).
The ABM simulations were run for a time interval t ∈ [0, 15] and we collected points

with a time step of ∆t = 0.25. When the mean value X̄ crossed, ±0.4 we stopped the
simulations, because the pdf profile blows up, very fast after that. Furthermore, we also
ignored the first two time points, to exclude the initial “healing” transients due to the
way we initialize (see the discussion for such healing periods in [19]). We thus end up
with a data set consisting of 40 (values of g) ×100 (initial conditions) ×58 (maximum
time points ignoring the first 2 steps of the transient) ×81 (space points) ≈ 15 × 106

data points. Since the amount of data is practically too large, for the training set we have
randomly downsampled to 106 data and used the remaining data as our test set.

7.2.3 Feature selection for the mesoscopic IPDE finance model
For dealing with the “curse of dimensionality” in training the FNN, learning our IPDE
model, we used ARD as implemented in Matlab by the function fitrgp for feature
selection. Here, we a priori selected as candidate features, the space x per se, the field
ρ, the first ρx, second ρxx and third ρxxx spatial derivatives estimated with central FD,
as well as I± defined as the integrals of ρ in a small region close to the boundaries:

I±(t) = ±
∫︂ ±1

±1∓ϵ

ρ(x, t)dx, (7.31)

where ϵ = 0.05 corresponds to the size of the last two bins of the grid. We note that the
latter two candidate mesoscopic variables I± as defined above are related to the buying
and selling rates (see Eq.7.28), yet they do not depend on the frequencies v± as the
true buying and selling rates do. These “internal”/hidden variables v± are considered
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unknown. We also consider unknown the “quantum” jump sizes ϵ±. The target variable
to learn is the time derivative, at each collocation point x, estimated with forward FD as:

ρt(x, t) = ∂ρ(x, t)
∂t

= ρ(x, t+ dt)− ρ(x, t)
dt

. (7.32)

The effective relevance weights Wr(·) of the features, as obtained by using ARD, are
Wr(ρ) = 0.25, Wr(ρx) = 0.22, Wr(ρxx) = 0.14, Wr(ρxxx) = 0.04, Wr(I+) =
0.18, Wr(I−) = 0.12, Wr(x) = 0.27. As can be noted, the third derivative is the least
important feature, and we thus decided to disregard it; the most important feature is the
space x highlighting that the IPDE is not translational invariant. The dependency on x
implicitly captures the location of the source term Q representing the resetting of the
state of the agents at the origin, as in the FP IPDE Eq. (7.23). Note that the integral
features I± are also important. This is in line with the theoretical results regarding the
FP IPDE Eq. (7.23).

7.2.4 Bifurcation analysis of the mesoscopic IPDE for the financial
ABM.

To locate the tipping point, we have performed bifurcation analysis, using both ML-
identified IPDE surrogates. Furthermore, we compared the derived bifurcation dia-
gram(s) and tipping point(s) with what was obtained in [28, 131] using the EF approach
(see in the section B.5.2 for a very brief description of the EF approach). As shown
in Fig. 2(a) the two ML schemes approximate visually accurately the location of the
tipping point in parameter space. However, the FNN scheme fails to trace accurately
the actual coarse-scale unstable branch, near which simulations blow up extremely fast.
More precisely, the analytical FP predicts the tipping point at g∗ = 41.90 with corre-
sponding steady-state X̄∗ = 0.1607 and the EF at g∗ = 45.60 and X̄∗ = 0.1627; our
FNN predictions are at g∗ = 45.77 and X̄∗ = 0.1644, the RFF ones at g∗ = 45.34 and
X̄

∗ = 0.1684.

7.2.5 Macroscopic physical observables and latent data-driven observ-
ables via DMaps.

An immediate physically meaningful candidate observable is the first moment X̄ of the
agent distribution function (as also shown in [52]).

As simulations of the ABM show (see the inset in Figure 7.9(b), the mean preference
state X̄ , is one-to-one with another physically meaningful observable, the buying rateR+.
We also used the DMaps algorithm, to discover data-driven macroscopic observables. In
our case, DMaps applied to collected data, discovers a 1D latent variable ψ1 that is itself
one-to-one with X̄ , see Figure 7.9(b). The local-linear regression algorithm proposed
in [146] was applied to make sure that all the higher eigenvectors can be expressed
as local-linear combinations of ψ1 and thus they do not span independent directions.
Figure 7.9(c) illustrates that the normalized leave-one-out error, denoted as rk, is small
for ψ2, . . . , ψ10 suggesting they are all dependent/harmonics of ψ1.
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Therefore, any of the three macroscopic observables (two physical and one data-
driven) can be interchangeably used to study the collective behavior of the model.

7.2.6 Learning the mean-field SDE and performing bifurcation analysis
for the financial ABM.

Here, for our illustrations, we learned parameter−dependent SDEs for all the three
coarse variables we mentioned, namely the physically meaningful variables X̄ , R+, and
the DMaps coordinate ψ1. Here, we report the results for the identified SDEs in terms
of the DMaps coordinate ψ1, while later in section 7.2.9 we will report the additional
results for the identified SDEs with respect to X̄ and R+ (see Figure 7.10).

We used three neural networks to identify, respectively, three alternative different
one-dimensional mean-field SDEs based on the DMaps coordinate ψ1, mean preference
state X̄ and buying rate R+. Each network had 5 hidden layers with 32 neurons per
layer. The activation function for the drift network was tanh, and for the diffusivity
network, it was softplus. The data were divided into a 90|10 training|validation split.
Given this trained macroscopic SDE surrogate, the drift term (deterministic component)
of the identified dynamics was used to construct the bifurcation diagram with AUTO
[226] (see Figure 7.9(d). A saddle-node bifurcation was identified for g∗ = 45.77 where
ψ⋆

1 = 0.021. The estimated critical parameter value from the SDE is in agreement with
our previous work (g ≈ 45.60 [28]).

Details on Data collection and preprocessing Learning the SDE of the financial
ABM. In this section we describe how we collected data, specifically targeted to the
neighborhood of the tipping point, for the purpose of learning a parametric mean-field
SDE. ABM simulations were performed using N = 50, 000 agents, with ν± = 20,
ϵ+ = 0.075, ϵ− = −0.072, γ = 1. We selected 11 equally-spaced values of the mimetic
strength g, which is used as bifurcation parameter, in the range g ∈ [42, 47]. We gathered
at each time stamp the state of every agent (Xi), as well as the overall buying/selling rates
(R+ and R−). For convenience, we use the vector s = (X1, X2, · · · , Xn, R

+, R−)T ,
and denote the mean preference value of the agent state as:

X̄ = 1
n

n∑︂
i=1

Xi.

To select initial conditions that populate the state space (in terms of X̄ , across
multiple values of the parameter g) the following protocol was used: We start by running
one trajectory of the full ABM for g = 47, which ultimately leads to an explosion.
This trajectory was initialized by sampling the agents from a triangular distribution
p(X), as implemented in python, with lower limit −1, upper limit 1, and mode −0.6,
corresponding to a value X̄ ≈ −0.2. This trajectory was stopped using the termination
condition X̄ ≤ 0.4, indicative of incipient explosion. We selected 25 distinct instances
of the state of agents along the stochastic trajectory, corresponding to 25 different values
of X̄ in the range [−0.02, 0.32]. Then, for each value of the parameter g, we simulated a
total of 50 new stochastic trajectories, two for each distinct initial condition.
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As previously done in [52], in order to find the data-based one-dimensional coarse-
scale observable ψ1, the DMaps algorithm is carried out on 39 intermediate coarse
variables. Thus, we set up 37 percentile points p1, p2, · · · , p37 referring to our dis-
cretization of the cumulative distribution function (cdf) of the agents’ preference state.
For each pi, we computed its quantile function value Q(pi), where the quantile func-
tion Q(·) is defined as the inverse function of cdf FX of the random variable X . The
first 19 percentile values p1, p2, · · · , p18, p19 are set as 0.0005, 0.001, 0.002, 0.003,
0.004, 0.005, 0.0075, 0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4,
0.5. The last 18 probability values are set to be symmetric with the first 18, i.e.,
pi = 1 − p38−i, ∀i = 20, 21, · · · , 37; The remaining two coarse variable are the
overall buying and selling rates. Therefore, the full state s has a coarse 39-dimensional
representation s′ = (Q(p1), Q(p2), · · · , Q(p37), R+, R−)T .

7.2.7 Rare-event analysis/UQ of catastrophic shifts (financial “bub-
bles”) via the identified mean-field SDE.

Given the identified steady states at a fixed value g, we performed escape time compu-
tations. For g = 45.25, we estimated the average escape time needed for a trajectory
initiated at the stable steady state to reach X̄ = 0.3, i.e., sufficiently above the unsta-
ble branch. As shown in Figure 7.9(b), ψ1 and R+ are effectively one-to-one with X̄ ,
and we can easily find the corresponding critical values for ψ1 = −0.01 (flipped) and
R+ = 0.16. We now report a comparison between the escape times of an SDE identified
based on the DMaps coordinate ψ1 and those of the full ABM. In section 7.2.9 we also
report the escape times of the SDE for X̄ and R+ observables. To estimate these escape
times, we sampled a large number (10, 000 in our case) of trajectories.

In Figure 7.9(e) the histograms of the escape times for the identified SDE trained
on ψ1 for g = 45.25 and g = 43.75 are shown. In Figure 7.9(f), we also illustrate the
empirical histogram of escape times of the full ABM for g = 45.25. The estimated
values for the mean and standard deviation, as computed with temporal simulations from
the SDE trained on the DMaps variable ψ1 for g = 45.25, g = 43.75 and the full ABM
at g = 45.25 are here reported in Table 7.3.

Table 7.3: Escape time computations for the financial ABM. Means and Standard de-
viations as computed with temporal simulations from the SDE trained on the DMaps
variable ψ1 for g = 45.25, g = 43.75 and the ABM at g = 45.25 respectively.

Models SDE at g = 45.25 SDE at g = 43.75 ABM
Mean Escape Time 84.07 480.92 434.00

Escape Time Standard deviation 68.91 454.83 363.64

As shown, the mean escape time of the full ABM is a factor of five larger than
that estimated by the simplified SDE model in ψ1 for g = 45.25 (still within an order
of magnitude!). The SDE model for g = 43.75 gives an escape time comparable to
the one of the ABM for g = 45.25. Given that the escape times change exponentially
with respect to the parameter distance from the actual tipping point, a small error in the
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identified tipping point easily leads to large (exponential) discrepancies in the estimated
escape times.

7.2.8 Computational cost for the financial ABM.
We compared the computational cost required to estimate escape times with many
stochastic temporal simulations, through the full ABM and the identified mean-field
SDE. To fairly compare the computational costs, we computed the escape times with the
ABM for g = 45.25, and that of the SDE for g = 43.75, since the two distributions of
the escape times are more comparable. The estimation in both cases was conducted on
Rockfish (a community-shared cluster at Johns Hopkins University) by using a single core
with 4 GB RAM. For the 10,000 sampled stochastic trajectories, the total computational
for the identified coarse SDE in ψ1 was 33.56min and the average time per trajectory,
3.36× 10−3min. The mean time per function evaluation was approximated as the ratio
of mean time per trajectory over mean number of iterations.

For the ABM, the total computational time needed was 18.56 days and the mean time
per trajectory was 2.67min. Therefore, the total computational time for computing the
escape time with the SDE model in ψ1 was around 800 times faster than the ABM. This
highlights the computational benefits of using the reduced surrogate models in lieu of
the full ABM for escape time computations.

7.2.9 Additional Results: Two physical based alternative mean-field
SDEs

In this section, we illustrate results obtained for two alternative one-dimensional mean-
field SDE surrogates, using as their effective state variable X̄ andR+, respectively; these
were omitted in the main text for brevity.

The constructed bifurcation diagrams from the identified deterministic drift of the
two SDE surrogates trained on X̄ and R+ are shown in Figure 7.10(a)-7.10(b). The
bifurcation point, in both cases, occurs for g∗ ≈ 45.5. Indeed, we obtained a tipping
point at g∗ = 45.90 with a corresponding X̄∗ = 0.1751 for the SDE trained on X̄;
and at g∗ = 45.76, with a corresponding R+∗ = 0.003586 for the SDE trained on R+.
The identified bifurcation point (our tipping point) for all three identified SDE models is
consistent with the value reported in Liu P. et al. [28, 52, 131].

For each of the identified SDEs, in terms of X̄ andR+ respectively, we estimated the
escape time distribution by computing 10, 000 stochastic simulations. Histograms of the
obtained escape times for X̄ and R+ are shown in Figure 7.10(c)-7.10(d), respectively.
Means of escape times distribution and their standard deviations for the identified SDE
in terms of X̄ and R+ here. We computed for the SDE on X̄ a mean of 75627.73 and
standard deviation 75198.20, for g = 45.25. While for g = 45.61 we got mean 468.06
and standard deviation of 456.71. For the SDE on R+ at g = 43.25 we got mean 73.61
and standard deviation 63.95. While at g = 43.15 we got mean 436.59 and standard
deviation 420.82. Similarly to the computations reported in the main text, for the SDE
models in X̄ and R+ we estimated the mean escape times for g = 45.25; We also found
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Figure 7.10: Additional results for two alternative SDEs surrogates. (a)-(b) The con-
structed bifurcation diagrams are based on the drift component of the identified effective
SDEs in terms of (a) X̄ , and of (b) R+. The bifurcation point is marked with a black
square. (c)-(d) Histograms of escape times obtained with simulations of 10,000 stochas-
tic trajectories for the SDE models trained on (c) X̄ , (d) R+.

parameter values of g that provide comparable mean escape time with that of the full
ABM for g = 45.25.

The estimated escape times of the identified SDE in X̄ for g = 45.25 is much larger
than any other model (including the ABM). This might suggest that this surrogate model
might be unreliable. The surrogate SDE model constructed in R+ has an escape time
similar to the model trained on ψ1.
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7.3 Case study 3: Tipping points in a compartmental epi-
demic model on a complex network

Compartmental models serve as structured population models, where the population is
categorized based on their roles in the epidemiological process. We consider a stochastic
version of a susceptible-infected-recovered-susceptible (SIRS) in discrete time. The rules
that drive the model are presented in the main text. Here we give more details about the
structure of the network on which the dynamics evolves. This network is constructed
in a straightforward manner: within a population of N nodes, it is assumed that each
node can potentially be connected to any of the other N − 1 nodes with a probability p.
This implies that a node has an equal probability, denoted as p, of forming a connection
with every other node in the network. Therefore, the degree distribution of Erdös-Rényi
network follows the binomial law:

P (k) =
(︃
N − 1
k

)︃
pk(1− p)N−1−k, (7.33)

where k denote a degree value. The mean degree of the network isE(k) = k̄ = pN . This
distribution for p = 1

2 is exactly symmetric, while for other values of p < 1/2 is almost
symmetric but with a “long tail", i.e., there is a very low probability for the occurrence
of degrees k > 2pN . In our computation we selected p = 0.0008 and N = 10, 000
which gives k̄ = 8. In particular along all computation we have used a predetermined
Erdös-Rényi network, with the maximum degree of a node being kmax = 21.

• Rule 1 (S → I): Susceptible individuals may become infected upon contact
with infected individuals, with probability PS→I = λ. This tunable parameter is
“tracked" for studying the outcomes of abrupt changes in the macroscopic behavior.

• Rule 2 (I → R): The transition between I and R happens with a probability
PI→R = µ([I]). The probability of recovery depends, at each time step, on the
overall density of infected individuals [I], according to the function [12]):

µ([I]) = 0.3
(︃

1− 1
1 + exp(−9([I]− 0.5))

)︃
. (7.34)

Such a non-linear function for the probability of recovery has also been used
in other works to express the heterogeneity in the “environment" around each
individual (see also the discussion in [12]).

• Rule 3 (I → R): A recovered individual (R) loses its immunity and becomes
susceptible (S) with a fixed probability PR→S = ϵ = 1

5 . This condition expresses
the case of temporal immunity.

The above rules establish a complex stochastic microscopic model that change the
state of each individual over time. In order to describe the model at a macroscopic
(emergent) level, let us represent the overall density of susceptible, infected, and recovered
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individuals as [S], [I], and [R], respectively. In Figure 7.8(d)-(f) we depict the stochastic
trajectories of the overall densities [S], [I], [R] of the N = 10, 000 agents for values
of the rate of infection λ = 0.27, 0.28, 0.29, 0.30, 0.31, 0.32. For such macroscopic
observables, a simple analytical closure can be found assuming that a uniform and
homogeneous network is a good approximation. This means assuming that (a) the degree
of each node practically coincides with the mean degree of the network, denoted as
z = E(k); (b) that the probabilities of two connected nodes being in a susceptible and
infected state, respectively, are independent of each other. The resulting mean field model
reads [12]:

d[S]
dt

= −λz[S][I] + ϵ[R],

d[I]
dt

= λz[S][I]− µ([I])[I],

[S] + [I] + [R] = 1.

(7.35)

For other higher-order analytical macroscopic pairwise closures, such as the Bethe
Ansatz, the Kirkwood approximation and Ursell expansion, the interested reader can
consult [12].

7.3.1 ML macroscopic mean-field surrogates for the epidemic ABM.
It is well known that for dynamics evolving on complex networks, a closed-form, an-
alytically derived mean-field approximation in Eq. (7.35) is usually not accurate [12].
Here, we show how one can achieve a better approximation through the construction of
effective mean field-level ML surrogate models. We will start with the identification,
from data, of a mean field-level effective SIR model. Then, following the proposed
approach, we identify -again from data- an effective one-dimensional SDE to model the
stochastic dynamics close to the tipping point and quantify the probability of occurrence
of an outbreak where all the population becomes infected.

Given the high-fidelity data collected from the epidemic ABM, to learn the ML mean
field SIR surrogate we used two coupled FNN, labeled FS and FI , each with two hidden
layers with 10 neurons for each layer, for learning a black-box evolution for the effective
dynamics of the two macroscopic densities [S] and [I], that reads:

d[S]
dt

= FS([S], [I], [R];λ),

d[I]
dt

= FI([S], [I], [R];λ),
(7.36)

with the constraint [S] + [I] + [R] = 1. We remind the reader that the parameterλ,
representing the probability of a susceptible individual to get infected, is tracked for
bifurcation analysis purposes. The training process results in an MAE of 7.27E-04 and
an MSE of 1.27E-06 on the test set. The regression error for the two networks was
R(FS) = 0.9996 and R(FI) = 0.9992.
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Figure 7.11: Numerical results for the epidemic ABM. (a) Reconstructed bifurcation
diagram w.r.t. the probability of infection, λ, with the ML mean-field surrogate model;
the one computed from the analytical mean-field Eq. (7.35), and the one constructed
with the Equation-free (EF) approach are also given [12]. Dashed lines represent the
unstable branches. (b)-(c) ABM-based simulations-and Diffusion Maps- (DMaps) driven
observables. (b) the density of infected [I] vs. the first DMaps coordinate ϕ1. (c)
The estimated residual rk based on the local linear regression algorithm [146]. (d)
The effective bifurcation diagram based on the drift component of the identified mean-
field macroscopic SDE based on ϕ1. (e-f) Histograms of escape times obtained with
simulations of 10, 000 stochastic trajectories using: (e) the constructed SDE for λ = 0.29
(blue histogram), λ = 0.285 (red histogram), and (f) the full ABM at λ = 0.29.

Data collection for learning the ML mean-field-level SIR ABM simulations were
performed usingN = 10, 000 agents on an Erdös Rényi distributed network (see Section
7.3). The probability λ that susceptible individuals become infected is our bifurcation
parameter. For the data set, we selected 51 equally spaced points in the range λ ∈ (0, 0.5].
For each of the values of λ, we created a grid of 146 points in the triangle with corners
[(0, 0), (0, 1), (1, 0)]. The grid points are concentrated close to the edges [(0, 0)− (0, 1)]
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and [(0, 0)− (1, 0)] and also close to the effective unstable steady-states, obtained by the
EF approach in [12]. These values correspond to the initial values at time t = 0 of the
densities [S0] and [I0] that are constrained by [S] + [I] ≤ 1. These initial states are then
lifted into the agents’ space, i.e., randomly picking a fraction of [S] nodes and a fraction
of [I] nodes in the network and assigning the corresponding state S and I . The remaining
nodes are then set as R. At each time step t of the ABM, we collect the densities [S](t)
and [I](t). Since we are dealing with a stochastic model, for each initial condition, we
ran 20 stochastic simulations of the ABM, and we averaged along the generated copies
(realizations) of the density variables.

The ABM simulations were performed for a time interval t ∈ [0, 12] with a constant
time step ∆t = 1 corresponding to 1 day in unit of time. We ignored the first two time
points, to avoid the initial “healing" transients. We thus collected a data set consisting
51 (values of λ) ×146 (initial conditions) ×10 (time points) ×20 (copies) ≈ 1, 500, 000
data points. The estimation of the time derivative, for learning the system of ML mean-
field-level ODEs, was made with a three-point centered FD stencil.

7.3.2 Bifurcation analysis of the ML mean-field SIR surrogates.
To locate the tipping point, we have performed bifurcation analysis using the ML mean-
field SIR surrogates. For our illustration, we also compare the derived bifurcation
diagram(s) and tipping point(s) with those obtained in [12] using the EF approach and
the analytically derived mean-field SIR model given by Eq. (7.35). As shown in Fig-
ure 7.11(a), the ML SIRS surrogate approximates adequately the location of the tipping
point in parameter space, as well as the entire bifurcation diagram as constructed with the
EF approach. Additionally, it outperforms the statistical-mechanics-derived mean-field
approximation given by Eq. (7.35). More precisely, the statistical-mechanics-derived
mean-field SIRS model predicts the tipping point at λ∗ ≈ 0.166 with corresponding
steady-state ([S]∗, [I]∗) = (0.138, 0.449) and the EF at λ∗ = 0.289 with corresponding
steady-states ([S]∗, [I]∗) = (0.138, 0.451); our ML mean-field SIR surrogate predictions
are at λ∗ = 0.304 with corresponding steady-states ([S]∗, [I]∗) = (0.135, 0.456).

7.3.3 Macroscopic physical observables and data-driven observables via
DMaps for the epidemic ABM.

Two immediate physically meaningful candidate observables are the densities [S], [I].
However, close to the saddle node bifurcation the system is effectively one-dimensional
and [S] and [I] are effectively one-to-one with each other in the long term dynamics,
eventually taking place on the slow eigenvector of the stable steady state.

We also demonstrate this via the DMaps algorithm. In our case, DMaps applied to the
collected data discovers a one-dimensional latent variable parameterized byϕ1 that is also
one-to-one with [I] (see Figure 7.11(b)). The local-linear regression algorithm proposed
in [146] was also applied to confirm that the remaining eigenvectors are harmonics of ϕ1
and thus they do not span independent directions, see Figure 7.11(c). This confirms that
the emergent ABM dynamics close to the tipping point lie on one-dimensional manifold.
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7.3.4 Learning the effective mean-field-level SDE and performing bifur-
cation analysis for the epidemic ABM.

Here, for our illustration, we learned a one-dimensional parameter–dependent SDE for
the DMaps coordinate ϕ1.

We used a neural network to identify, a one-dimensional mean-field SDE based on
the DMaps coordinate ϕ1. The network had 5 hidden layers with 32 neurons per layer.
The activation function for the drift network was tanh, and for the diffusivity network,
it was softplus. The data were divided into a 90|10 training|validation split.

Given this trained macroscopic SDE surrogate, the drift term (deterministic com-
ponent) of the identified dynamics was used to construct the bifurcation diagram with
AUTO (see Figure 7.11(d). A saddle-node bifurcation was identified for λ∗ = 0.294
where ϕ⋆

1 = 0.006. The estimated critical parameter value from the SDE is in agreement
with our previous work (λ ≈ 0.289 [12]).

Data collection for learning the ML SDE surrogate targeted in the neighborhood
of the tipping point. We have, in this case, focused our attention on a smaller region
in parameter space, targeted to the tipping point, where the dynamics is effectively one-
dimensional. In particular, we have selected 21 parameter values in λ ∈ [0.2, 0.4] and for
each a fixed grid of 63 initial conditions in the box ([S0], [I0]) ∈ [0.05, 0.3]× [0.25, 0.7].
We have also run the ABM for 20 time instants, collecting 5 different stochastic realization
(we do not average in this case, as we are interested in learning also the stochastic
nature of the dynamics). We ignored the first five time points, to avoid the initial
“healing" transients and also to keep only the long-term dynamics that live on the one-
dimensional manifold. Therefore, we obtained a data set consisting of 21 (values of λ)
×63 (initial conditions) ×15 (time points) ×5 (different realizations) ≈ 100, 000 data
points. However, for the ML SDE surrogate, the data were randomly subsampled to just
25, 000 data points.

7.3.5 Rare-event analysis/UQ of catastrophic shifts via the identified
epidemic SDE.

Given the identified steady states at a fixed value of λ, we performed escape time
computations. Forλ = 0.29, we estimated the average escape time needed for a trajectory
initiated at the stable steady state to reach [I] = 0.662, a value sufficiently above the
unstable branch. The corresponding value for the DMaps coordinate was ϕ1 = −0.007.
We now report a comparison between the escape times of the SDE identified based on the
DMaps coordinate ϕ1 and those of the epidemic ABM. For this model, we also sampled
10, 000 stochastic trajectories.

In Figure 7.11(e) the histograms of the escape times for the SDE trained on ϕ1 are
shown for λ = 0.29 and λ = 0.285 . For the full epidemic ABM in Figure 7.11(f) we
depict the histogram of escape times for λ = 0.29.

The estimated values for the mean and standard deviation, as computed with temporal
simulations from the SDE trained on the Diffusion Map variable ϕ1 for λ = 0.29, are
reported in Table 7.4.
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Table 7.4: Escape time computations for the epidemic ABM. Means and Standard
deviations as computed with temporal simulations from the SDE trained on the Diffusion
Map variable ϕ1 for λ = 0.29, λ = 0.285 and the ABM at λ = 0.29, respectively.

Models SDE at λ = 0.29 SDE at λ = 0.285 ABM
Mean Escape Time 348.24 1164.65 1308.65

Escape Time Standard deviation 310.16 1117.56 1247.70

As shown, the mean escape time of the full ABM is four times larger than that
estimated by the simplified SDE model for λ = 0.29 (still within an order of magnitude).
The SDE model for λ = 0.285 gives an escape time comparable to the one of the ABM
for λ = 0.29.

As we mentioned earlier, the escape times change exponentially depending on the
parameter value. Therefore, a small error in the estimated location of the tipping point
can lead to large discrepancies in the estimated escape times.

7.3.6 Computational cost for the epidemic ABM.
We compared the computational time required to estimate escape times with the full ABM
and the identified mean-field SDE. To compare the computational times, we computed
the escape times with the ABM for λ = 0.29, and that of the SDE for λ = 0.285, since
the mean escape times there are more similar. The estimation of the computational cost
for both models (SDE and ABM) was conducted in Matlab. For the 10,000 stochastic
trajectories, the total computational time for the identified coarse SDE was ∼ 1 minute
and the one for the full epidemic ABM was ∼ 16 hours.

7.4 Discussion
Designing control policies to prevent catastrophic shifts and performing uncertainty
quantification for such events are significant challenges today [28, 131], particularly given
their potential to impact areas such as climate change, ecosystem collapse, pandemics,
and economic crises. These shifts often occur due to a combination of systematic changes
and stochastic perturbations, especially near tipping points, where a system can abruptly
transition to a different, potentially catastrophic regime. Tipping points are frequently
tied to underlying bifurcations, making it crucial to systematically identify the bifurcation
mechanisms governing these shifts and quantify their likelihood [18, 21].

To tackle these challenges, mathematical models and large-scale ABMs offer powerful
tools to develop “digital twins" for analysis and prediction, as real-world experiments are
often infeasible or unethical. However, the inherent complexity and high dimensionality
of such models make the computational task demanding.

In this work, we proposed a machine-learning (ML)-based framework to infer tip-
ping points from high-fidelity spatio-temporal data generated by large-scale simulators.
Specifically, we focused on the identification of bifurcation points, their types, and the
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probability distributions of catastrophic shift occurrences. Our analysis was demonstrated
on three models: (i) a FitzHugh-Nagumo PDE model for action potential propagation
in unmyelinated neurons; (ii) a mimetic financial market ABM; and (iii) an epidemic
ABM on a complex social network. In particular in the last two, tipping points, such as
financial bubbles or epidemic outbreaks, emerged in the dynamics.

Analytical surrogates, while useful, can introduce biases when applied to such com-
plex models, particularly for inverse problems involving IPDEs. Alternatively, manifold
learning can identify low-dimensional latent spaces for the emergent dynamics, followed
by learning surrogate SDEs in these spaces. This approach reduces computational com-
plexity while maintaining accurate approximations of tipping points. However, it may
lead to macroscopic observables that lack direct physical interpretability.

Different system-level tasks benefit from distinct coarse-scale surrogates, highlighting
the importance of selecting appropriate ML models for specific objectives. Extensions
of this work may involve learning more general stochastic dynamics (e.g., those based on
Lévy processes) or moving towards effective SPDEs or fractional evolution operators, as
these can yield more informative surrogate models.

While the focus here is not on real-world early warning systems, some collective
variables identified through diffusion maps (DMaps) could serve as candidate coordinates
for such systems. The primary goal, however, has been to demonstrate how ROMs can
be systematically constructed through ML to analyze the emergence of tipping points
and quantify the probability of rare events, particularly in systems with high-dimensional
ABM simulations.
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8 Conclusions and future
work

This thesis addressed significant advancements in ML numerical analysis-assisted method-
ologies tailored to address complex systems modeling and analysis, offering both theoret-
ical and practical contributions across several key domains. The integration of Random
Projection Neural Networks (RPNNs) and RandONets with classical numerical analysis
frameworks has led to innovative solutions for both forward and inverse problems, sig-
nificantly improving our ability to model, simulate, and predict the behavior of complex
systems, thus relaxing the curse of dimensionality. The exploration of RPNNs and Ran-
dOnets has shown their potential as efficient, scalable alternatives to traditional machine
(deep) learning methods for function and operator approximation. By demonstrating
exponential convergence and computational efficiency, RPNNs have been positioned as
a strong contender in solving both forward and inverse problems, especially in terms
of computational speed and accuracy, with particular advantages in scenarios requiring
real-time or large-scale simulations. Their success in approximating nonlinear operators,
such as those found in ODEs and PDEs, suggests broad applicability in complex systems,
where high-dimensional and computationally expensive problems are prevalent.

Regarding, the forward problems, particularly for nonlinear stationary PDEs and
stiff ODEs/DAEs, RPNNs have been effectively employed to develop new numerical
methods that outperform traditional schemes like Finite Difference (FD) and Finite
Element Methods (FEM), as well as professional code built-in in MATLAB as ode15s.
These results underscore the method’s potential in handling complex phenomena such
as timescale separations in stiff systems as well as bifurcations and tipping points, which
are crucial in understanding the dynamics of complex systems. The future integration of
techniques like slow inertial manifolds and matrix-free methods promises to extend the
applicability of these schemes to even larger and more complex systems.

The work on inverse problems for the identification of coarse-scale parametrized
PDEs and SDEs, as well as their bifurcation analysis and the study of the associated rare
events, brings ML into the domain of uncertainty quantification and the prediction of
catastrophic events in complex systems. Through machine-learning-based frameworks,
tipping points have been identified in high-dimensional ABMs, providing insights into
the mechanisms behind phenomena like financial bubbles or epidemic outbreaks.

The thesis demonstrates how manifold learning techniques can identify low- dimen-
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sional latent spaces in which surrogate models, such as SDEs, can be developed. This
approach enables the analysis of emergent behavior and tipping points while reducing
computational cost. However, it also introduces challenges, particularly in ensuring the
physical interpretability of macroscopic observables.

Broader Implications for Complex Systems. The advancements and findings of this
Thesis have profound implications for modeling, simulation, and analysis of the behavior
of complex systems. In particular, the advancements in RPNNs and RandONets offer a
pathway to more efficient and scalable models that can handle the inherent complexity
of real-world systems. These methods provide robust alternatives to deep learning
architectures, offering better computational efficiency and interpretability, which are
critical for scientific applications.

One of the key takeaways from this work is the importance of integrating ML with
tailor-made numerical analysis methods. This hybrid approach allows for the develop-
ment of interpretable SciML schemes that are not only efficient but also grounded in
established theoretical frameworks.

8.1 Future Directions
While this Thesis has made significant strides in addressing some key challenges in
complex systems modeling, several open problems remain. Future research could focus
on:

• Extending RPNNs and RandONets to handle high-dimensional problems and time-
dependent PDEs.

• Developing improved basis function selection strategies and regularization tech-
niques for RPNNs.

• Exploring the use of multistep methods and slow inertial manifolds to enhance the
performance of machine-learning-based ODE and DAE solvers.

• Refining surrogate models for rare event analysis and tipping point detection,
particularly in systems governed by stochastic dynamics.

• Further integrating ML with state-of-the-art numerical methods, such as Krylov-
subspace techniques, to tackle large-scale simulations in complex systems.

By addressing these challenges, the methods developed in this thesis could be ex-
tended to even more complex scenarios, providing new tools for scientists and engineers
to better understand and predict emergent behaviors in systems ranging from climate
dynamics to financial markets. Moreover, the insights gained from this work are not only
applicable to the specific case studies presented, but also offer a broader framework for
tackling a wide range of scientific and engineering challenges.
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Appendix A

Preliminaries of Functional Anal-
ysis and measure theory for Data
Mining

In data analysis, measuring the difference, similarity, or “closeness" between data points
is fundamental to many algorithms and models. These concepts are formalized through
mathematical structures such as norms, distances, and metrics, which are crucial for
evaluating and quantifying differences in high-dimensional spaces – particularly in the
context of complex systems. In this appendix chapter, we review key concepts from
functional analysis, measure theory, and Lp-spaces.

A.1 Topologies and metrics

A.1.1 Topology
Next, we define a topology on a set X , which provides a framework for discussing and
exploring concepts such as convergence, continuity, compactness, and connectedness.

Definition A.1.1. A topology T on X is a collection of subsets of X (called open sets)
satisfying: (i) X ∈ T and ∅ ∈ T ; (ii) Any union of sets in T is in T ; (iii) Any finite
intersection of sets in T is in T .

Within a topological space, one can define continuity and compactness, both of which
are important in many problems in analysis and optimization.

Definition A.1.2. A function f : X → Y between topological spaces (X, TX) and
(Y, TY ) is said to be continuous if, for every open set V ∈ TY , the preimage f−1(V ) ∈
TX .
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Definition A.1.3. A subset K ⊂ X of a topological space X is said to be compact if
every open cover of K has a finite subcover. That is, if K ⊂

⋃︁
α∈A Uα where each Uα

is open, then there exist finitely many indices α1, α2, . . . , αn ∈ A such that

K ⊂
n⋃︂

i=1
Uαi

. (A.1)

Connectedness in topology refers to the idea that a topological space cannot be split
into two disjoint non-empty open sets. Here’s a formal definition:

Definition A.1.4. A topological spaceX is said to be connected if there do not exist two
open sets U and V in T such that: (i) X = U ∪ V ; (ii) U ∩ V = ∅; and (iii) U ̸= ∅ and
V ̸= ∅.

A.1.2 Distance Functions and Metric Spaces
In ML, data mining, and complex systems, a distance or metric in vector space quantifies
the similarity or dissimilarity between data points, guiding clustering, classification, and
pattern recognition tasks.

Definition A.1.5. A distance function (or metric) is a function d : V ×V → [0,∞) that
satisfies the following for all x, y, z ∈ V : (i) d(x, y) ≥ 0, with d(x, y) = 0 ⇐⇒ x = y;
(ii) d(x, y) = d(y, x) (symmetry); (iii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Definition A.1.6. A metric space (V, d) is a set V together with a distance function d.
The topology induced by a metric is defined by the open sets (balls)B(x, r) = {y ∈ V :
d(x, y) < r}, where x ∈ V and r > 0.

A crucial concept that can be defined within a metric space is that of convergence:

Definition A.1.7. Let (X, d) be a metric space with metric d, and let {xn} be a sequence
of points in X . The sequence {xn} is said to converge to a point x ∈ X if for every
ϵ > 0, there exists an integer N such that for all n ≥ N , d(xn, x) < ϵ. In this case, we
write xn → x or limn→∞ xn = x.

This definition generalizes the concept of convergence in Rn, where d(xn, x) would
typically represent the Euclidean distance between xn and x.

Here, we provide examples of commonly used distances in data analysis. For
two finite-dimensional vectors x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn, the
Minkowski distance is defined as:

dp(x,y) =
(︄

n∑︂
i=1
|xi − yi|p

)︄ 1
p

, 1 ≤ p <∞. (A.2)

In particular, we have: (i) for p = 1 the Manhattan distance; (ii) for p = 2 the Euclidean
distance; and (iii) for p =∞ the Maximum distance, d∞(x,y) = maxi |xi − yi|.
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The Euclidean distance is particularly significant because it arises from the scalar
product ⟨·, ·⟩.

Indeed, the Euclidean norm of a vector x can be defined as ∥x∥2 =
√︁
⟨x,x⟩. Then,

the Euclidean distance d2(x,y) between two vectors x and y is then defined as the norm
of their difference: d2(x,y) = ∥x− y∥2 .

Moreover, the scalar product allows us to derive important geometric concepts such
as the angle θ between two vectors, defined through the relationship: cos(θ) = ⟨x,y⟩

∥x∥∥y∥ ,.

A.1.3 Hausdorff spaces
Hausdorff spaces guarantee that points can be “separated" by neighborhoods, which is
essential for discussing limits and uniqueness of limits in data analysis. More formally,

Definition A.1.8. A topological space (X, T ) is called a Hausdorff space if for any two
distinct points x, y ∈ X , there exist disjoint open sets U, V ∈ T such that x ∈ U and
y ∈ V . Formally:

∀x, y ∈ X, x ̸= y =⇒ ∃U, V ∈ T , x ∈ U, y ∈ V, U ∩ V = ∅. (A.3)

Every metric space, with topology induced by the metric, is a Hausdorff space. In a
metric space, the distance function allows us to separate any two distinct points by open
balls of sufficiently small radii.

The separability of the space is fundamental for the following properties of Hausdorff
spaces:

1. Limits of sequences are unique. Specifically, if xn → x and xn → y, then x = y.
2. A setA ⊂ X is closed if and only if, for every sequence {xn} ⊂ A that converges

to some x ∈ X , we have x ∈ A. This means that convergence sequences stay within
closed sets.

3. Compact sets are closed. That is, if K ⊂ X is compact, then K is also a closed
subset.

A.1.4 Norms and Banach Spaces
A norm on a vector space V is a function that assigns a non-negative scalar to each vector,
representing its “length" or “magnitude". Formally, we provide the following definition:

Definition A.1.9 (Norms). A norm on a C-vector space V is a function, denoted by
∥ · ∥ : V → [0,∞[, that satisfies the following properties for all x, y ∈ V and α ∈ C:

1. Non-negativity: ∥x∥ ≥ 0 with ∥x∥ = 0 ⇐⇒ x = 0 2. Homogeneity:
∥αx∥ = |α|∥x∥ 3. Triangle inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥

The pair (V, ∥ · ∥) is said a normed vector space. We can define, based on the norm,
the function d induced by the norm, d : V × V → [0,∞[. The property of the norm
show easily that d is a distance function and that V is also a metric space. If the space V
is also embedded with the topology induced by the metric d, then it is also a Hausdorff
space with countable basis. Specifically, given a sequence of vector xn ∈ V converging
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to x, i.e., (xn → x), we have that (xn → x) ⇐⇒ ∥xn − x∥ → 0. Also, easily from
triangular inequality we get that ∥x−y∥ ≥ ∥x∥−∥y∥ and thus the following proposition
holds:

Proposition A.1.1. ∥ · ∥ is continuous.

Proof. Let xn → x, then |∥xn∥ − ∥x∥| ≤ ∥xn − x∥ → 0. Hence, ∥xn∥ → ∥x∥.

Now, let (V, d) be a metric space, and let xn be a sequence in V . The sequence xn

is called a Cauchy sequence if and only if:

∀ϵ > 0,∃N ∈ N,∀n,m > N, d(xn, xm) < ϵ. (A.4)

It is straightforward to show that convergent sequences are Cauchy, and Cauchy
sequences are bounded. A metric space (V, d) is said to be complete if every Cauchy
sequence converges. A complete normed space (V, ∥ · ∥) is called a Banach space.

A.2 Measurable Spaces and Positive Measures
In data analysis and ML, the concept of a measure plays a crucial role in defining
probabilities, volumes, and densities over spaces. A measure µ is a function that assigns
a non-negative value (often interpreted as “size" or “weight") to subsets of a given set,
formalized within the framework of measure theory.

Let us introduce some definitions.

Definition A.2.1. A σ-algebraA on a setX is a collection of subsets ofX that is closed
under complements and countable unions. That is,A satisfies: (i)X ∈ A; (ii) if A ∈ A,
then X \A ∈ A; and (iii) if {An}∞

n=1 ⊂ A, then
⋃︁∞

n=1 An ∈ A.

As an example, the Borel σ-algebra is the σ-algebra generated by the open sets of a
topological space, i.e., all sets that can be formed from them using countable unions and
intersections.

A pair (X,A) is called a measurable space, whereX is a set andA is a σ-algebra on
X .

Definition A.2.2. A measure µ on (X,A) is a function µ : A → [0,∞] that satisfies:
(i) µ(∅) = 0; (ii) µ is countably additive: if {An}∞

n=1 ⊂ A is a disjoint collection, then

µ

(︄ ∞⋃︂
n=1

An

)︄
=

∞∑︂
n=1

µ(An); (A.5)

A positive measure is a measure whereµ(A) ≥ 0 for allA ∈ A. Also, sinceµ ≡ +∞
is a measure, we explicitly require that for a positive measure, there exist an A ∈ A such
that µ(A) < +∞. Basic simple properties of positive measures are monotonicity and
sub-additivity.
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Definition A.2.3. A function f : X → R is called measurable with respect to the
measure µ if for every Borel set B ⊂ R, the pre-image f−1(B) ∈ A, where A is the
sigma-algebra associated with µ. In simpler terms, a function is measurable if the sets
where it takes particular values can be measured using the measure µ.

In the following, we introduce different types of measures, in order to present the
fundamental intuitions and examples that can be associated to the formal definition:

A.2.1 Some example of Measure
Probability measure. A probability measure is a measure µ defined on a measurable
space (X,Σ) where µ(X) = 1. This corresponds to the probability of the entire space
being 1, meaning that the total probability of all events in X sums up to 1. Probability
measures are used to describe the distribution of random variables over a feature space
X . Usually µ is defined with the notation P.

Dirac measure. The Dirac measure δx is the simplest example of a measure, concen-
trated entirely at a single point x ∈ X . It is defined as:

δx(S) =
{︄

1 if x ∈ S,
0 otherwise.

(A.6)

This measure assigns a weight of 1 to any set S that contains x, and 0 otherwise.
From a probabilistic viewpoint, the Dirac measure represents a deterministic scenario:
if X ∼ δx, then X = x almost surely, meaning P(X = x) = 1.

Lebesgue Measure. The Lebesgue measure λRD is a fundamental example in the
theory of integration, defining a way to measure “volume" in RD. For a measurable set
S ⊂ RD, the Lebesgue measure is intuitively described as:

λRD (S) =
∫︂

S

dx. (A.7)

This measure generalizes the concepts of length, area, and volume in one, two, and
higher dimensions, respectively. The Lebesgue measure is defined rigorously using the
Borel σ-algebra B(RD), which consists of all Borel measurable sets in RD.

In probabilistic terms, a uniform distribution over the interval [0, 1] is an example of
a random variable X that follows the law of the Lebesgue measure restricted to the unit
interval:

λ[0,1](S) =
∫︂

S∩[0,1]
dx, S ⊂ R. (A.8)
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Gaussian measure. The Gaussian measure is one of the most important probability
distributions in statistics and data analysis. In Rd, the Gaussian measure is defined by its
density function:

NRd(S) = 1
(2π)D/2

∫︂
S

exp
(︃
−∥x∥

2

2

)︃
dx, (A.9)

where ∥x∥ denotes the Euclidean norm in Rd.
The Gaussian distribution is a cornerstone in probability theory, particularly because

of its appearance in the Central Limit Theorem, which states that under certain conditions,
the sum of independent random variables converges to a Gaussian distribution.

A.2.2 Random Variables
In the context of complex systems and ML, a random variable X is a mathematical tool
that models uncertainty and variability within a system. Random variables allow us to
quantify and analyze randomness in processes where deterministic modeling is infeasible
or incomplete.

Formally, in a probability space (Ω,F ,P), where F is a σ-algebra over Ω, a random
variable is a measurable functionX : Ω→ R. Ω represents the set of all possible system
states, and X associate to each element/state x ∈ Ω a real value. For example, in a
complex system like a climate network or a social network, X could represent variables
such as temperature fluctuations or the number of connections between individuals, each
influenced by randomness and external factors.

There are two main types of random variables: (a) discrete random variables, which
take on a countable set of values, and, (b) continuous random variables, which take
values in an uncountable set, typically an interval in R. The distribution of a random
variable X describes how the probability is spread over the possible values that X can
take. The distribution can be characterized in several ways, depending on whether the
random variable is discrete or continuous.

If X is a discrete random variable, the distribution is described by the probability
mass function (pmf) pX(x). The pmf gives the probability that X takes a specific value
x:

pX(x) = P(X = x), x ∈ Ω.

If X is a continuous random variable, its distribution is described by the probability
density function (pdf) fX(x). The pdf gives the relative likelihood that X is near a
specific value x. However, the probability that X takes any exact value is 0; instead,
probabilities are computed over intervals:

P(a ≤ X ≤ b) =
∫︂ b

a

fX(x) dx.

The pdf satisfies the following properties:
(i) fX(x) ≥ 0 for all x, and,
(ii)
∫︁∞

−∞ fX(x) dx = 1.
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A.2.3 Lebesgue integral
The Lebesgue integral is a generalization of the Riemann integral, particularly useful
for integrating functions that may be difficult or impossible to handle with the Riemann
approach, especially in higher dimensions or for more complex sets. Unlike the Riemann
integral, which partitions the domain of the function, the Lebesgue integral partitions
the codomain (the range of the function values). This allows it to extend the notion of
the integral to functions that are not necessarily continuous. By measuring the “size"
of the sets where the function takes particular values, the Lebesgue integral provides
a more flexible framework for integrating a broader class of functions, including those
with discontinuities.

Let (X,A, µ) be a measure space, where µ is a measure on the measurable space
X with σ-algebra A. For a non-negative measurable function f : X → [0,∞], the
Lebesgue integral of f with respect to µ is defined as the supremum of integrals over
simple functions ϕ, i.e., functions that can be written as a finite linear combination of
indicator functions ϕ =

∑︁
i αiχAi, that approximate f from below:∫︂

X

f dµ = sup
{︃∫︂

X

ϕdµ : 0 ≤ ϕ ≤ f, ϕ simple
}︃
. (A.10)

If f is integrable, this generalizes naturally to real-valued functions by decomposing
them into positive and negative parts, f = f+ − f−.

A.2.4 Lp-Spaces
Given a measurable space (X,A, µ) and a real-valued function f : X → R, we define
the Lp-norm for 1 ≤ p <∞ as:

∥f∥p =
(︃∫︂

X

|f(x)|p dµ(x)
)︃1/p

. (A.11)

The space of µ-measurable functions for which ∥f∥p <∞ is called the Lp-space:

Lp(X,µ) = {f : X → R | ∥f∥p <∞}. (A.12)

For p =∞, the corresponding norm is defined as:

∥f∥∞ = ess sup
x∈X
|f(x)|, (A.13)

where ess sup refers to the essential supremum, which is the smallest number M
such that |f(x)| ≤M almost everywhere with respect to µ. The space of functions with
finite ∥f∥∞ is denoted L∞(X,µ).

TheLp-spaces are Banach spaces for all 1 ≤ p ≤ ∞, meaning they are complete with
respect to the Lp-norm. That is, every Cauchy sequence of functions in Lp converges to
a function in Lp.

A fundamental inequality in Lp-spaces is Hölder’s inequality, which states that for
any f ∈ Lp(X,µ) and g ∈ Lq(X,µ), where 1/p + 1/q = 1, the following inequality
holds:
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∫︂
X

|f(x)g(x)| dµ(x) ≤ ∥f∥p∥g∥q. (A.14)

Lp-spaces are fundamental in many areas of analysis and applied mathematics, in-
cluding solving forward and inverse problems in complex systems. In data analysis, they
provide a framework for studying the behavior of functions with respect to various norms,
ensuring robust convergence properties. Lp-spaces are also essential in numerical anal-
ysis, where approximations and solutions are often studied in terms of their behavior in
these spaces. Moreover, in ML, these spaces offer a rigorous setting for analyzing func-
tion spaces and error metrics, particularly in tasks such as regression, signal processing,
and functional approximation.

A.3 Fourier Transforms and Schwartz Spaces in Functional
Analysis

In the context of functional analysis, the understanding of function spaces is critical
for advancing theoretical frameworks and applications in data analysis. Hence, for
convenience, we include some definition and concept that will be used later.

We first define the space of test functions D(Rd), which consists of infinitely dif-
ferentiable functions with compact support. This means that each function ϕ ∈ D(Rd)
vanishes outside a bounded region in Rd, ensuring that it can be integrated over Rd

without concerns regarding divergence.
The dual space, denoted D′(Rd), contains distributions, which are continuous linear

functionals that act on test functions. Distributions generalize classical functions and
allow us to manipulate and analyze objects that may not be well-defined in the classical
sense, such as Dirac’s delta function.

A particularly important subclass of functions is the Schwartz space S(Rd), which
comprises rapidly decreasing functions. A function g ∈ S(Rd) satisfies the condition
that, for all multi-indices α and β, the derivatives xα∂βg(x) decay faster than any poly-
nomial as |x| → ∞. The dual of this space, S ′(Rd), consists of tempered distributions,
which provide a suitable framework for Fourier analysis, particularly when dealing with
non-analytic functions.

The Fourier transform is a pivotal operator in this setting, transforming functions
between the spatial and frequency domains. For f ∈ L1(R), the Fourier transform of f
is defined as:

ˆ︁f(t) = F (f)(t) = 1√
2π

∫︂ +∞

−∞
f(x)e−ixt dx ∀t ∈ R. (A.15)

We can introduce the measure dm(x) = 1√
2π
dx to express this as:

F (f)(t) =
∫︂ +∞

−∞
f(x)e−ixt dm(x). (A.16)
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This definition can be extended to Schwarz space. For g ∈ S(Rd), the Fourier
transform is defined as: ˆ︁g(ξ) =

∫︂
Rd

e−2πiξ·xg(x) dx. (A.17)

This transformation not only provides insights into the frequency components of g but
also preserves the smoothness and decay properties inherent to functions in the Schwartz
space.

It is immediately evident that F (f)(t) is well-defined and continuous. First, note
that: ∫︂ +∞

−∞
|f(x)e−ixt| dx =

∫︂ +∞

−∞
|f(x)| dx < +∞, (A.18)

because f ∈ L1(R), thus F (f) is well-defined. Additionally, it can be shown that we can
dominate |f(x)e−ixt| with g(x) = |f(x)|, which is an integrable function. Although f
may not be continuous, the parameter t is only part of the continuous e−ixt, therefore
F (f)(t) is continuous. Furthermore, we also have:

|F (f)(t)| ≤ 1√
2π

∫︂ +∞

−∞
|f(x)e−ixt| dx = 1√

2π
∥f∥L1(R). (A.19)

Thus, we can define the operator F : L1(R) → C(R) as the Fourier transform. It is
trivial to observe that F is linear.

Both the Fourier transform F and its inverse F−1 can be extended to apply to
tempered distributions, allowing for the analysis of a wider class of functions, including
those that arise in the context of partial differential equations and signal processing. The
formulation of the Fourier transform for tempered distributions is given by:

F(T )(ξ) = ˆ︁T (ξ) =
∫︂
Rd

e−2πiξ·xT (x) dx, (A.20)

for suitable test functions T in S ′(Rd).
We refer to functions as slowly increasing if they are tempered distributions, which

allows us to work within a framework where the Fourier transform is well-defined and
can provide meaningful results. The interplay between the properties of Schwartz spaces,
tempered distributions, and the Fourier transform is fundamental in various applications,
including data analysis, where frequency domain techniques can be employed for filtering,
reconstruction, and the analysis of time-series data.

A.3.1 Properties of the Fourier Transform
We now present some fundamental properties of the Fourier transform that can simplify
the calculation of certain transforms.

Let f ∈ L1(R). We list several properties of the Fourier transform:

Proposition A.3.1. (i) F (eiθf(x))(t) = ˆ︁f(θt) ∀θ ∈ R

(ii) F (fy(x))(t) = ˆ︁f(t)e−iyt ∀y ∈ R
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(iii) F (f(λx))(t) = 1
|λ|
ˆ︁f (︁ t

λ

)︁
∀λ ̸= 0

Finally, if f is even, then ˆ︁f is also even. If f is real and even, then ˆ︁f is real and even.
If f is odd, then ˆ︁f is also odd. If f is real and odd, then ˆ︁f is odd and purely imaginary.
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Appendix B

An introduction to Manifolds,
differential equations, bifurca-
tion theory and multiscale mod-
eling

This appendix chapter introduces key mathematical and theoretical tools necessary for
analyzing the emergent behavior in complex systems. To model, analyze, and predict
such emergent behavior, we will explore both forward and inverse problems in the context
of dynamical systems, which typically involve ODEs, PDEs, and SDEs.

We begin by introducing the foundational concepts of dynamical systems and man-
ifolds, which form the mathematical setting for many complex systems. Manifolds,
equipped with local Euclidean structures, are essential for understanding systems with
high-dimensional, nonlinear behavior, where Diffusion Maps and the Laplace-Beltrami
operator can be used to approximate the underlying geometry. Additionally, we delve
into ODE and PDE theory, which provide the governing equations for many real-world
systems, and discuss boundary conditions, weak solutions, and stochastic processes,
which are critical for modeling uncertainty and noise in these systems.

Bifurcation theory, which studies sudden qualitative changes in system dynamics, will
be introduced in the context of ODEs and extended to PDEs. We also cover continuation
theory to address how solutions evolve as parameters vary. Operator theory will also be
discussed briefly.

This chapter sets the mathematical groundwork for solving both forward problems
(predicting system behavior) and inverse problems (inferring underlying system proper-
ties from observed data) in complex systems.
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B.1 Manifolds and differential equations
A manifold is a topological space that is locally similar to a Euclidean space. Informally,
a smooth d-dimensional manifold is a space that looks flat in small regions, resembling
Rd. On such spaces, we can define velocities or directions at each point due to the
smoothness of the manifold, allowing the traversal of the surface by following these
directions. This forms the foundation for defining dynamical systems, which describe
how points evolve on manifolds over time.

To formalize this, we first need to define continuous deformations between spaces,
known as homeomorphisms. A homeomorphism is a bĳective and continuous function
between topological spaces that has a continuous inverse function.

Definition B.1.1. A homeomorphism ϕ : A → B between two topological spaces A
and B is a continuous, bĳective function such that its inverse ϕ−1 is also continuous.

Intuitively, homeomorphisms can be understood as continuous transformations (stretch-
ing and bending) of space without tearing. Equipped with the concept of homeomor-
phisms, we can now define a manifold.

Definition B.1.2. A d-dimensional manifold M is a topological Hausdorff space such
that every point has a neighborhood homeomorphic to an open subset ofRd. A coordinate
chart (U, ϕ) is an open set U ⊂ M along with a homeomorphism ϕ : U → V , where
V ⊂ Rd. An atlas A is a collection of charts

A = {(Uα, ϕα)}α∈I

where I is an index set, andM =
⋃︁

α∈I Uα. If, for all α, β ∈ I , the transition map

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ)→ Rd

is continuously differentiable any number of times, the atlas is called a smooth atlas or
C1-atlas. A smooth manifold is a manifold with a smooth atlas.

Next, we define a diffeomorphism, which extends homeomorphisms by requiring
differentiability.

Definition B.1.3. Let M1 and M2 be two smooth manifolds. A Ck-diffeomorphism
ψ :M1 →M2 is a homeomorphism such that both ψ and ψ−1 are k-times continuously
differentiable. In this case,M1 andM2 are said to be diffeomorphic.

While it is often desirable to represent a manifold by a global coordinate chart,
many manifolds cannot be globally represented in this way. A classic example is the
2-sphere, which cannot be mapped onto R2 without singularities. However, the concept
of embedding allows us to represent a manifold in a higher-dimensional Euclidean space.

Definition B.1.4. LetM1 andM2 be smooth manifolds, and let H :M1 →M2 be a
smooth map. The Jacobian dHp of H at a point p ∈ M1 defines a linear map between
the tangent spaces TpM1 and TH(p)M2. If H is injective and rank(dHp) = dim(M1)
for all p ∈ M1, then H is called an immersion. If H is a homeomorphism onto its
image, then H is called an embedding ofM1 intoM2.
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The tangent space provides a local linear approximation to a manifold at any point.

Definition B.1.5. Let M be a d-dimensional smooth manifold, and let p ∈ M. The
tangent space TpM at p is the vector space of all possible directions in which one can
tangentially pass through p. Formally, it is the set of equivalence classes of curves passing
through p, where two curves are equivalent if their derivatives at p are the same.

The concept of embedding is particularly important in the Takens/Whitney Em-
bedding Theorem, which guarantees that any d-dimensional smooth manifold can be
embedded in R2d. This embedding allows us to study manifolds using the familiar tools
of Euclidean space.

With these definitions in place, we can now introduce dynamical systems, which
describe the evolution of points on a manifold over time.

Definition B.1.6. A dynamical system is a manifoldM, called the state space, together
with a diffeomorphism ϕ : T ×M→M, where T is the time. If T = R, the system is
called continuous, and ϕ is called a flow. If T = N0, the system is called discrete, and ϕ
is called a discrete-time map. The flow ϕt(x) represents the state of the system at time
t, starting from x ∈M .

For continuous dynamical systems, differential equations govern the time evolution.
Consider a smooth vector field f onM. The flowϕt of the system satisfies the differential
equation:

d

dt
ϕt(x) = f(ϕt(x)), ϕ0(x) = x.

This is an ODE that describes how the state x evolves over time. Writing x(t) := ϕt(x),
the ODE becomes:

dx

dt
= f(x),

where f(x) is the vector field describing the velocity at each point. This formalism
lays the groundwork for describing both ODEs and PDEs in dynamical systems. The
set {x(t) | t ∈ R+, x(0) = x0 ∈ M} is referred to as the trajectory of the dynamical
system, starting at x(0) = x0. If the function f in the differential equation depends only
on x(t) = ϕt(x), the system is called an ODE. If f also depends on the derivatives of ϕ
with respect to x, it is called a PDE.

B.2 Initial Value and Boundary Value Problems
In mathematical modeling and numerical analysis, the study of differential equations
plays a critical role in describing the behavior of dynamical systems. The focus of
this section is to introduce initial value problems (IVPs) for ODEs and boundary value
problems (BVPs) for PDEs.

As we saw in the previous section, an ODE is a relationship between a function and
its derivatives. Where x(t) ∈ Rn is the state vector, and f(x, t) describes the system’s
evolution over time. When we refer to the solution of a forward problem, most of the
time, we actually address an initial value problem (IVP).
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Definition B.2.1. An IVP for an ODE consists of an equation of the form dx
dt = f(x, t)

together with an initial condition x(0) = x0.

The Picard-Lindelöf Theorem guarantees the existence and uniqueness of a solution
to an IVP under certain conditions.

Theorem B.2.1 (Picard-Lindelöf Theorem). Consider the IVP:

dx

dt
= f(x, t), x(0) = x0.

If f is Lipschitz continuous with respect to x and continuous in t, then there exists a
unique solution x(t) in some neighborhood of t = 0.

In the context of inverse problem, Takens’ Theorem and the Whitney Embedding
Theorem are essential for the reconstruction of dynamical systems from time-series data.

Theorem B.2.2 (Takens’ Theorem). LetM be a compact d-dimensional manifold. For a
smooth dynamical system onM with generic properties, the map defined by time-delay
coordinates x(t), x(t− τ), . . . , x(t− (k − 1)τ), where k > 2d, is an embedding ofM
into Rk.

B.2.1 Basic theory of PDEs
Unlike ODEs, which typically depend on a single variable (e.g., time), a PDE is an
equation that involves an unknown function u : Ω ⊂ Rn → R of two or more independent
variables (n > 1) and certain of its partial derivatives. In many cases, the variables can
represent time (t ∈ R) and space (x ∈ Rd), that in physical application is usually one,
two, or three dimensions. This introduces a broader range of problems, including BVPs,
where the solution is determined by conditions specified along the boundaries of the
spatial domain. However, PDEs, as a mathematical object, are not restricted to such
specific physical variable choices. In general, we can denote with the variable x ∈ Rd,
the independent variable of the function u, either including or not time as one of the
dimensions. In many cases, when the PDE is time-dependent, it also involves an IVP,
alongside a BVP, where an initial profile, u0(x), is specified at time t = 0.

Occasionally, a PDE in one single coordinate x ∈ R, while not being properly a
PDE as it do not involve partial derivatives, can be thought of as a stationary PDE
representing stable (or unstable) solution(s) of the associated time evolving problem.
That is, the corresponding long-term behavior (i.e., t→∞) of the system. This scenario
is especially interesting in bifurcation theory.

Although it is common to classify PDEs based on two independent variables, such as
x, y or t, x, this classification scheme does not generalize neatly to higher dimensions,
which can create a misconception that there exists a universal classification method for
all PDEs. While many classical PDEs are linear, much of the theoretical interest lies in
nonlinear PDEs, which govern complex physical and mathematical phenomena.

To represent a PDE mathematically, consider a vector α = (α1, . . . , αd), with
αi ∈ N0, that we call a multi-index of order |α| = α1 + . . . + αd. Then a multi-index
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derivative of order k ∈ N is given by :

Dku(x) :=
{︃

∂|α|u(x)
∂xα1

1 · · · ∂x
αd

d

: ∀α, such that |α| = k

}︃
. (B.1)

Definition B.2.2. A general k-th order PDE is an equation of the form:

F (Dku,Dk−1u, . . . ,Du, u,x) = 0,

where F is a given function and u : Ω ⊂ Rn → R is the unknown solution.

Here, Dku denotes the highest-order derivative of u. Solving a PDE means finding
a function u(x) such that F (u) = 0.

In some cases, the PDE can be expressed in the form of an operator equation:

Lu = f(x) or Lu = 0,

where L is a differential operator acting on u, and f is a known function. When
f = 0, the PDE is called homogeneous.

A linear PDE is one where the operator L is linear, meaning that the coefficients of
the derivatives do not depend on the unknown function u. More formally, a linear PDE
has the form: ∑︂

k≤|α|

aα(x)Dku(x) = f(x),

where aα(x) are the coefficients, which depend on the independent variables but not
on u. If f(x) = 0, the equation is called homogeneous.

A PDE is called semilinear if it is linear in the highest-order derivatives, but may be
nonlinear in lower-order terms. Otherwise, it is classified as nonlinear. A system of PDEs
consists of a collection of equations for a vector-valued unknown function u : Ω→ Rm

Boundary Conditions. In addition to the PDE, problems are typically posed within
a domain Ω ⊂ Rn, with conditions specified on the boundary of the domain, ∂Ω. A
general form for a boundary condition is:

Bu = g on ∂Ω, (B.2)

where B represents an operator acting on u at the boundary, and g is a given function.

Definition B.2.3. A boundary value problem (BVP) for a PDE involves solving the
equation within a domain Ω subject to boundary conditions (BCs) on ∂Ω.

Common types of BCs include: (a) Dirichlet boundary conditions: Specify the value
of the function on the boundary, i.e., u|∂Ω = g; (b) Neumann boundary conditions:
Specify the normal derivative of the function on the boundary, i.e., ∂u

∂n

⃓⃓
∂Ω = h; and

(c) Robin boundary conditions: A combination of Dirichlet and Neumann conditions,
αu+ β ∂u

∂n = g.
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While Dirichlet, Neumann, and Robin boundary conditions are the most well-known
types, many nonlinear extensions exist, often tailored to specific applications such as
fluid dynamics, heat transfer, biology, and materials science. Free-boundary problems,
in contrast, involve boundaries that evolve with the solution itself, making the boundary
position part of the problem. These arise in fluid mechanics, phase transitions, and
biological growth, where the boundary is not fixed and must be determined as part of the
solution process.

B.2.2 Well-Posedness

A well-posed PDE problem satisfies three key criteria: (i) existence of a solution; (ii)
uniqueness of the solution; and (iii) continuous dependence of the solution on the given
data.

While uniqueness (ii) may seem desirable, in complex systems modeling, we often
encounter phenomena such as multistability and bifurcations, where multiple solutions
are expected. For many nonlinear stationary PDEs, multiple solutions can arise, leading
to bifurcations in equilibrium states. In contrast, time-dependent PDEs generally evolve
towards a unique solution based on the initial conditions. Existence (i) is equally chal-
lenging, as there is no universal theory guaranteeing a solution for all PDEs, and existence
must be established on a case-by-case basis. Furthermore, how we define a solution is
crucial; the next sections will distinguish between classical and weak solutions.

Classical vs. Weak Solutions. When we refer to a “solution" of a PDE, it is important
to consider the regularity of the function u. Is it reasonable to require u being infinitely
differentiable or analytic? In many cases, for a PDE of order k, we ask that u be at least
k-times differentiable. Such a solution is called a classical solution.

However, for some equations, classical solutions may not exist or may not capture
important physical phenomena, such as shock waves. For instance, shock waves are
solutions to scalar conservation laws of the form:

ut + F (u)x = 0.

In such cases, weak solutions provide a more general framework by requiring u to satisfy
the PDE in an averaged or integral sense, particularly useful in problems involving
discontinuities or sharp interfaces.

Mathematically, weak solutions are formulated within the framework of Sobolev
spaces. A Sobolev space, denoted W k,p(Ω), is a function space that generalizes the
concept of differentiability, allowing for functions that possess weak (distributional)
derivatives up to order k, integrable in the Lp-sense over a domain Ω. Specifically,
W 1,2(Ω), often referred to as H1(Ω), is the most common Sobolev space used in PDEs,
and consists of functions u ∈ L2(Ω) whose first weak derivatives also belong to L2(Ω).

A weak derivative of a function u in L2(Ω) is a generalization of the classical
derivative. We say that u has a weak derivative v if for every smooth test function

204



Appendix B. An introduction to Manifolds, differential equations, bifurcation theory and multiscale
modeling

φ ∈ C∞
0 (Ω) (compactly supported smooth functions), the following holds:∫︂

Ω
u(x) d

dx
φ(x) dx = −

∫︂
Ω
v(x)φ(x) dx.

In this context, v is the weak derivative of u and u is differentiable in the “weak sense",
meaning that it satisfies the PDE almost everywhere (a.e.) in Ω, not necessarily pointwise.

Weak Solutions of PDEs. While for ODEs there is a clear criterion for existence of
solutions, given by the Picard-Lindelöf theorem B.2.1, for some PDEs, classical solutions
may not exist, and one usually resort to weak solutions. This concept is particularly
important for variational problems and finite elements methods:

Definition B.2.4. A weak solution to a PDE is a function u ∈ H1(Ω) that satisfies an
integral form of the PDE for all test functions v ∈ H1(Ω), where H1(Ω) is the Sobolev
space of functions with square-integrable first derivatives.

For example, the weak form of the Laplace equation ∆u = f is:∫︂
Ω
∇u · ∇v dx =

∫︂
Ω
fv dx for all v ∈ H1(Ω).

B.3 Introduction to Bifurcation Theory and Continuation
Methods

Bifurcation theory is a mathematical framework that studies the changes in the qualitative
behavior of dynamical systems as parameters are varied. In the context of ODEs,
bifurcations occur when a small change in a parameter value causes a sudden change in
the structure of the solution set.

Bifurcations can be classified into two primary categories: (a) local bifurcations,
which are analyzed through changes in the local stability properties of equilibria, periodic
orbits, or other invariant sets as parameters cross critical thresholds; and (b) global
bifurcations, which typically occur when larger invariant sets of the system collide with
one another or with the system’s equilibria. These bifurcations cannot be identified solely
by conducting a stability analysis of the equilibria.

Local bifurcations encompass phenomena such as period-halving bifurcations, which
lead to order, and period-doubling bifurcations that can induce chaos. A local bifurcation
arises when a change in a parameter affects the stability of an equilibrium. In continuous
systems, this corresponds to the real part of an eigenvalue of an equilibrium crossing zero.
In discrete-time systems, it corresponds to a fixed point possessing a Floquet multiplier
with modulus equal to one.

Formally, consider the continuous dynamical system represented by the ordinary
differential equation (ODE):

ẋ = f(x, λ), f : Rn × R→ Rn.
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A local bifurcation occurs at (x0, λ0) when the Jacobian matrix ∇x0,λ0f has an
eigenvalue with a zero real part. If this eigenvalue equals zero, the bifurcation is classified
as a steady-state bifurcation; if it is non-zero but purely imaginary, the bifurcation is
identified as a Hopf bifurcation.

Among the types of local bifurcations, the saddle-node bifurcation is particularly
significant. It occurs when two fixed points – one stable and the other unstable –collide
and annihilate each other as a parameter crosses a critical value. This phenomenon can
be expressed mathematically by its one-dimensional normal form ODE, as:

du

dt
= r − u2,

where r is a parameter. At r = 0, the fixed points merge and disappear, resulting in
a qualitative change in the system’s dynamics.

Another important type is the Andronov-Hopf bifurcation, which occurs when a pair
of complex conjugate eigenvalues of the linearized system crosses the imaginary axis.
This bifurcation can be represented by its two-dimensional normal form ODEs, in polar
coordinate, as:

dr

dt
= ±(µ− r2)r; dθ

dt
= ω,

where µ is the bifurcation parameter and ω is the natural angular frequency. For µ > 0,
a limit cycle arises; with + sign, the limit cycle is stable, and the bifurcation is called
supercritical; while with − sign, the limit cycle is unstable and the bifurcation is called
subcritical.

B.3.1 Numerical Continuation
Continuation algorithms for numerical bifurcation analysis play a crucial role in identi-
fying tipping points. Specifically, these methods help in analyzing the behavior of the
complex system at hand as it undergoes a “hard" bifurcation, such as a saddle-node, a limit
point, or a subcritical Hopf bifurcation. The present discussion focuses on continuation
past limit points (saddle-node bifurcations), without aiming to provide a comprehensive
guide to all bifurcation scenarios, for which one can refer to a number of published
studies [223, 226, 69]. Consider a parameter-dependent dynamical system, described by
a system of autonomous ODEs (that can also result from the discretization of a system
of PDEs, by employing, e.g., finite differences):

dy

dt
= f(y;λ), f : Rn+1 → Rn (B.3)

where y ∈ Rn is the n-dimensional state variable vector, λ ∈ R is a scalar parameter
and the function f is time-independent and sufficiently smooth. The goal is to construct
a solution curve Γ for the system of nonlinear algebraic equations:

Γ := {(y;λ) ∈ Rn+1 such that f(y, λ) = 0}, (B.4)
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corresponding to the equilibria of the system (B.3) for various values of the parameter λ.
The main concept underlying numerical continuation methods is to generate a sequence of
pairs (yi, λi), i = 1, 2, . . . that approximate a specific branch of steady-states, satisfying
a chosen tolerance criterion (||f(yi;λi)|| ≤ tol for some small tol > 0) and involves a
predictor-corrector process. We start from a known point on the curve, (yi;λi) ∈ Γ, and
the tangent vector vi to the curve there, computed through the implicit function theorem.
To compute a new point (yi+1;λi+1), we need two steps: (a) finding an initial guess
for (yi+1, λi+1) and (b) iteratively refining the guess to converge towards a point on the
curve Γ (B.4). We denote the initial guess for xi+1 ≡ (yi+1, λi+1) as X(0)

i+1, given by:

X
(0)
i+1 = xi + hvi, (B.5)

whereh is a chosen step size. For simplicity, one can use a finite difference approximation
for the vector vi, so obtaining the so-called natural continuation:

vi = xi − xi−1

h
, X(0) = 2xi − xi−1. (B.6)

For a small enough h the prediction X
(0)
i+1 is close to the solution curve and can be

corrected via e.g. a Newton-like scheme. Indeed, by fixing an increment dλ for the value
of the parameter λi+1 = λi + dλ the system (B.4) has n equations and n unknowns
yi+1. Let’s assume we have reached an approximation point X(k) approximating xi+1
at the k-th Newton’s iteration, in order to find the correction dX , we need to compute
the Jacobian matrix ∇yf(Xk) and solve the following system:

∇yf(Xk)dX = −f(Xk). (B.7)

Thus, we can compute the new approximationXk+1 = X(k) +dX of xi+1. The problem
is that this approach can work only far from a bifurcation/critical point, for which the
Jacobian matrix becomes singular and the system (B.7) cannot be solved. Beyond critical
points, where the Jacobian matrix becomes singular, solution branches can be traced with
the aid of numerical bifurcation theory. For example, solution branches past saddle-node
bifurcations (limit points) can be traced by applying the so-called pseudo arc-length
continuation method. This involves the parametrization of both y and λ by the arc-
length s on the solution curve. The solution is sought in terms of both y(s) and λ(s)
in an iterative manner, by solving until convergence an augmented system, involving
Eq. (B.4) and the following pseudo arc-length condition:

N(X(k)
i+1) = (X(k)

i+1(s)−X(0)
i+1)T · vi = 0. (B.8)

The tangent vector vi+1 to the curve at the new point is then computed. The direction
along the curve must be preserved, i.e. vT

i vi+1 = 1, and vi+1 must be normalized.
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B.4 Stochastic processes and SDEs
A stochastic process is a collection of random variables indexed by time or space,
representing the evolution of a system over time under uncertainty. Let (Ω,A, P ) be a
probability space, and let I be an index set with a total order≤ (often N, R+). For every
i ∈ I , letFi be a sub-σ-algebra ofA. Then F := (Fi)i∈I is called a filtration, ifFk ⊆ Fℓ

for all k ≤ ℓ. Filtrations are families of σ-algebras that are ordered non-decreasingly.
If F is a filtration, then (Ω,A,F, P ) is called a filtered probability space. A stochastic
process {X(t) : t ∈ T} is defined on this filtered probability space. Stochastic processes
can be categorized into various types, including discrete-time processes, continuous-time
processes, Markov processes, and Gaussian processes.

B.4.1 Stochastic Differential Equations (SDEs)
An SDE is a differential equation in which one or more of the terms is a stochastic
process. In the context of complex systems, SDEs are employed to model the effects
of noise and intrinsic volatility within a system. Noise can arise from external pertur-
bations, measurement errors, or environmental fluctuations, leading to a more accurate
representation of real-world phenomena. A prototypical SDE, is the Brownian motion,
that can typically be expressed in the following form:

dX(t) = a(X(t), t)dt+ b(X(t), t)dW (t), (B.9)

whereX(t) represents the state of the system at time t, a(X(t), t) is the drift term that
models deterministic behavior, b(X(t), t) is the diffusion term representing the intensity
of randomness, and W (t) is a standard Brownian motion (or Wiener process).

Brownian motion, denoted asW (t), is a fundamental example of a stochastic process
that serves as a model for random movement. It has several key properties: (i) The
increments W (t) −W (s) are normally distributed with mean 0 and variance t − s for
t > s. (ii) It has independent increments, meaning that the future movements of the
process are independent of past movements. (iii) The paths of W (t) are continuous
almost surely but nowhere differentiable.

Stopping time. A stopping time is a random variable T that signifies the moment
at which a specific condition is met. It can be defined with respect to a filtration.
Mathematically, T is considered a stopping time if, for any t, the event {T ≤ t} is
measurable with respect to the σ-algebra at that time. Later, we will specifically refer
to stopping times in the context of escaping time, where the stopping time is defined by
the condition of leaving a particular region. This is particularly relevant for dynamical
systems that are in a stable steady state, as we explore the probabilities associated with
crossing unstable steady branches and qualitatively undergoing critical transitions to
alternate steady states of the system.
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B.5 Complex multiscale systems
Low-dimensional dynamical systems, often described by a few variables, provide in-
sights into the fundamental behavior of systems through ODEs and PDEs. However,
many real-world phenomena involve interactions among a large number of components,
resulting in high-dimensional dynamics that are significantly more complex. These
high-dimensional systems give rise to emergent behaviors, making prediction and anal-
ysis more challenging.

Complex systems are defined by their high-dimensional interactions among many
components, which lead to emergent behaviors that cannot be easily inferred from the
behavior of individual elements. They can be modeled using complex networks, where
nodes represent the individual components and edges illustrate the interactions between
them. The dynamics of each agent are typically governed by nonlinear equations, giving
rise to a wide range of behaviors. In this section, we will outline some of these modeling
approaches, focusing on complex networks and ABMs.

Complex Networks. Many social, biological, and technological networks exhibit sig-
nificant and non-trivial topological characteristics, with connection patterns among their
elements that are neither completely regular nor entirely random. These characteristics
include a heavy-tailed degree distribution, a high clustering coefficient, community struc-
tures, and hierarchical arrangements. Two prominent and extensively studied categories
of complex networks are scale-free networks and small-world networks, both of which
serve as canonical case studies in the field. Scale-free networks are defined by their
power-law degree distributions, while small-world networks are characterized by short
path lengths and high clustering coefficients.

A complex network can be represented using an adjacency matrix A, where the ele-
ment aij signifies the presence (and potentially the strength or weight) of the connection
between nodes i and j. The dynamics of the network can be modeled using a system of
ODEs (or SDEs if noise is incorporated):

dxi

dt
= fi(xi) +

N∑︂
j=1

aijg(xi, xj),

where xi denotes the state of the node i, fi is a nonlinear function that describes
the internal dynamics of the node i, and the subscript i indicates potential heterogeneity
among the nodes in the network. The term g(xi, xj) captures the influence of connected
nodes on a node i.

In complex systems, the nonlinear interactions between agents can result in behaviors
such as synchronization, oscillations, and even chaotic dynamics.
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Agent-based modeling. Agent-based modeling is a powerful method for studying
complex systems through computer simulations. In ABM, individual agents operate
according to agent-agent and environment-agent interactions, as well as to event-driven,
stochastic rules. Each agent is defined by attributes and programmed to behave according
to specific rules, which include decision-making heuristics that guide their actions based
on perceived interests such as reproduction or social status. These agents may also exhibit
behaviors such as learning, adaptation, and reproduction. These agents may interact with
one another and their environment, with interactions influenced by factors such as spatial
distance, changes in their states, environmental changes and decision-making processes.

ABMs generate rich, emergent phenomena that are often difficult to predict from the
behavior of individual agents alone. However, the flexibility of these models can lead to
over-parameterization, as modelers may attempt to include numerous details to achieve
a desired yet unforeseen output, highlighting the intricate nature of complex systems.

B.5.1 Multiscale dynamics
The study of systems with multiple scales encompasses a wide range of fields. However,
modeling and analysis at a single scale have historically been more prevalent. This
section focuses on systems characterized by multiple scales.

A key distinction exists between identifying a dynamical system at a coarser scale and
simply reducing the dimension of a state space. Coarsening a system may actually require
a higher-dimensional state space. For instance, the transition from a particle system to
its probability distribution as the number of particles approaches infinity involves a
finite-dimensional state space for the particles, described by ODEs, while the probability
distribution represents an infinite-dimensional space characterized by PDEs. Thus, the
coarser system can exhibit infinite-dimensional characteristics despite originating from
a finite-dimensional microscopic model.

If coarsening is not feasible, one can often achieve temporal advancement by reducing
the dimensionality of the state space through model order reduction, leading to reduced-
order models. This approach maintains the same observational scale, although it may
sacrifice some accuracy for a more significant reduction in complexity.

Multiscale systems can often be illustrated through slow-fast systems, which consist
of ODEs with fast and slow variables x and y. The dynamics are governed by functions
f and g, separated by a small scale parameter ϵ (where 0 < ϵ≪ 1):

ϵẋ = f(x, y, ϵ),

ẏ = g(x, y, ϵ).

In PDE frameworks, the scale parameter frequently appears as a coefficient for the
highest-order derivatives, as seen in the Navier-Stokes equations for incompressible
flows, where the Reynolds number Re serves as the scale parameter:

ρ

(︃
∂u
∂t

+ (u · ∇)u
)︃

+∇p = 1
Re
∇2u,

∇ · u = 0.
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Slow-fast ODE and PDE systems can be analyzed using singular perturbation theory,
which is grounded in Fenichel theory. A dynamical system with a small scale parameter
ϵ generates trajectories on a manifoldMϵ. As ϵ→ 0, the system simplifies to trajectories
on a manifold M0, often making analysis easier by eliminating the fast components.

Slow-invariant manifolds [125] are crucial in understanding systems with disparate
time scales, allowing for the separation of fast and slow dynamics. This approach
facilitates the development of reduced-order models that effectively capture the essential
behavior of complex systems.

While many properties of multiscale systems can be understood through two-scale
systems, some systems may possess finite, countably infinite, or even continuous scales,
making differentiation challenging. For example, turbulent flow systems involve a con-
tinuum of scales that interact, complicating numerical solutions. In these cases, closure
relations, such as assuming a linear relationship between viscous stress and local strain in
Newtonian fluids, are often employed to approximate the effects of unaccounted scales.

Surrogate Models. Surrogate models aim to replace complex models with simpler,
more computationally efficient alternatives. Every model of a natural process can be
viewed as a surrogate for the actual process. However, surrogate models specifically
substitute one model for another, not a real-world process. When only observational data
is available, surrogate models can help elucidate the dynamics and internal structures of
the original model, which aligns with the objectives of ML.

B.5.2 Equation-Free approach: an example of multiscale modeling

The Equation-Free (EF) framework, proposed in [19, 37], operates on the key assump-
tion that for a given microscopic simulator there exists a fundamental coarse-scale de-
scription: as the distributions evolve, higher-order moments quickly become dependent
on lower-order ones, ultimately converging towards a slow invariant manifold. This
concept embodies the singularly perturbed system paradigm, where the interconnected
nonlinear ODEs governing the moments of the agent distribution rapidly approach a
low-dimensional slow manifold. The main tool employed in the EF approach are the
so-called coarse time-steppers. Coarse time-steppers establish a link between micro-
scopic simulators, such as ABM, and traditional continuum numerical algorithms. Such
methods encompass a series of essential stages, as outlined below:

• Assume we start from a coarse-scale initial condition, corresponding to the appro-
priate coarse-scale variables x(t) (e.g., diffusion map coordinates) of the evolving
ensemble of agents at time t;

• Map the macroscopic description, x(t), through a lifting operator, L, to an en-
semble of consistent microscopic realizations:

X(t) = L(x(t)); (B.10)
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• For an (appropriately chosen) short macroscopic time ∆T , evolve these realizations
using the black-box ABM simulator to obtain the value(s):

X(t+ ∆T ) = Φ∆T (X(t)) ≡ Φ∆T (Lx(t)); (B.11)

• Map the ensemble of agents back to the macroscopic description through the
restriction operatorM:

x(t+ ∆T ) =MX(t+ ∆T ). (B.12)

The entire procedure, i.e., the coarse time-stepper, can be thought of as a “black box”:

x(t+ ∆T ) = ϕ∆T [x(t)] ≡MΦ∆T (L[x(t)]). (B.13)

Such an approach, allows one to accelerate simulations and also to perform bifurcation
analysis, exploiting the Newton-GMRES [224] algorithm for the computation of equilib-
ria of (B.13). To find a stationary state x of Eq. (B.13), if there exists, we seek a solution
of the following equation:

F (x) = x− ϕ∆T [x] = 0, (B.14)

wrapping around it the Newton-GMRES method.
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Fundamentals of Machine Learn-
ing and Data Analysis

Unlike the traditional scientific paradigm, where data are collected to verify or refute a
hypothesis under study, data now become the central focus of inquiry, especially in the
context of complex systems [19, 64, 66]. Data Science distinguishes itself from classical
science by emphasizing the use of existing data for new purposes, thus reversing the
cause-effect relationship between data and information. Hypothesis generation now
emerges from data analysis activities, using techniques specifically developed for this
purpose. The efforts in creating these techniques have led to the emergence of new
research fields, known as Data Mining, Data Analysis and Machine Learning.

The term Data Mining refers to the process of uncovering valuable knowledge from
databases or unstructured data by analyzing the underlying patterns. In data science,
data, patterns, and processes form a closely linked triad. Data, which consists of records
or observations of a phenomenon, serves as the foundational material. Patterns, expressed
mathematically, reveal the hidden structures within the data and thus emergent behavior
in complex systems. Processes guide the transformation from raw data to meaningful
insights. This iterative process involves data preparation, pattern discovery, extraction,
and evaluation, culminating in valuable knowledge.

Extracting knowledge from data requires a systematic approach that includes data
selection, pre-processing, transformation, mining, and interpretation. A key considera-
tion in this process is evaluating the discovered patterns using criteria such as validity,
usefulness, generalization, and comprehensibility. Patterns must remain valid when ap-
plied to new data in future iterations of the model. However, data mining is only one
step within the broader knowledge discovery process. Data selection identifies relevant
subsets, while pre-processing ensures the quality and consistency of the data. Trans-
formation enhances its utility by reducing noise and inconsistencies. Mining applies
algorithms to uncover patterns, and interpretation translates these patterns into practical
insights for decision-making. Thus, the data-driven process for knowledge discovery is
not a specific technique or single algorithm but a heterogeneous discipline that extends
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beyond traditional statistical methods into a multidisciplinary domain, particularly when
dealing with complex dynamical systems.

C.1 Data treatment and pre-processing
Before applying data mining and ML algorithms to analyze complex systems, it is
essential to conduct a thorough exploration phase to prepare the data for analysis. This
involves addressing errors, removing redundancies, and selecting representative samples
from the dataset to make accurate inferences about the entire population. Sampling
techniques play a crucial role in ensuring that a subset of data accurately reflects the
broader dataset, especially when dealing with complex systems characterized by their
high dimensionality, nonlinear dynamics, and emergent properties.

During data collection, missing or inconsistent information is a common challenge,
making data pre-processing a critical step. This process improves the quality of the data
and assists in identifying which variables are most useful for analysis. Pre-processing
includes several techniques: data cleaning, which handles missing values, outliers and
unrealistic data; data integration, which resolves inconsistencies by combining data
from different sources; data transformation, which prepares data for specific analysis
algorithms, such as normalization or scaling, to ensure compatibility and comparability,
especially when dealing with complex systems characterized by different scales and units;
and data reduction, which decreases data volume without compromising the validity of the
analysis. This is particularly important for complex systems, which can generate massive
amounts of data that can be difficult to analyze. Specifically, common approaches to data
transformation and reduction includes: normalization, scaling data to a specific range,
typically between 0 and 1, to standardize values and improve algorithm performance.;
discretization, converting continuous variables into discrete intervals. dimensionality
reduction, finding and extracting new low-dimensional parametrization of the data, using
few significant observables, while maintaining its integrity; subsampling, which select a
subset of data that adequately represents the full dataset; and feature selection, identifying
and selecting the most relevant variables for the analysis to avoid overfitting and improve
model performance.

While these preprocessing steps are essential to ensure that the data is of high quality
and properly prepared for analysis, it is important to note that the purpose of this thesis
is not to explore the data preprocessing phase in depth. Instead, the focus will be on the
dimensionality reduction, feature selection and ML algorithms and their performance,
assuming that the data has already been well-sampled, normalized, and preprocessed
effectively.

214



Appendix C. Fundamentals of Machine Learning and Data Analysis

C.2 Statistical Inference
In statistical inference, the goal is to draw meaningful conclusions about a population
based on a representative subset, known as a sample. For a set of independent and iden-
tically distributed random variables X1, X2, . . . , Xn, this constitutes a random sample.
Each observationXk in the sample is termed an independent observation, and the actual
values x1, x2, . . . , xn are referred to as realizations of the sample. When analyzing
complex systems, which often involve high-dimensional and nonlinear interactions, tra-
ditional inference methods like sampling become more challenging. Problems include
estimating system parameters and/or governing macroscopic laws from partial data, han-
dling uncertainty, and dealing with the chaotic, unpredictable or non-linear nature of
such systems.

Rarely is a sample studied for its own sake. Instead, the ultimate goal is to make
inferences about the population from which the sample was drawn. Since studying an
entire population is often too costly, methods must be used that allow generalizing the
results obtained from analyzing the sample to the reference population.

This involves two key methods: parameter estimation and hypothesis testing. Param-
eter estimation seeks to determine unknown population parameters, such as the mean
and variance, using estimators like the sample mean and sample variance. Hypothesis
testing is used to assess whether a sample could have originated from a hypothesized
population.

Statistics are functions of sample data that do not rely on unknown parameters.
Notable statistics include:

Definition C.2.1. Sample mean, denoted as X̄ = 1
n

∑︁n
i=1 Xi,

Definition C.2.2. Sample variance, given by S2 = 1
n−1

∑︁n
i=1(Xi − X̄)2,

Definition C.2.3. k-th order sample moment, defined as X̄(k) = 1
n

∑︁n
i=1 X

k
i .

These basic statistics are instrumental in making inferences about the population
from which the sample was drawn. However, in the context of high-dimensional complex
systems, they often fail to capture the intricate dependencies and structure of the data.
This is particularly true due to the curse of dimensionality, where traditional statistics may
become less informative as the dimensionality of the data increases. In such cases, more
sophisticated methods are required to reveal the underlying low-dimensional manifold on
which the data resides, as is often the case in complex dynamical systems. Techniques like
Dimensionality Reduction, including Diffusion Maps or Singular Value Decomposition
(SVD), become essential to extract meaningful insights beyond what classical statistics
can offer.
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C.3 Estimators
In statistical inference, a key task is estimating unknown parameters of a population from
a random sample.

Definition C.3.1. Let (X1, . . . , Xn) be a random sample from a population with an
unknown parameter θ. An estimator of θ is a statistic Θ̂ = g(X1, . . . , Xn) used to
estimate θ. The value of the estimator for a realization (x1, . . . , xn) is called the point
estimate of θ.

The quality of an estimator is evaluated by its sampling distribution, with preference
given to those closely centered around θ. An estimator Θ̂ is unbiased if E(Θ̂) = θ.

An estimator θ̂n, where n represents the number of realizations (sample size), is
called consistent if it converges in probability to the true parameter θ as n →∞. More
formally, θ̂n is consistent for θ if for every ϵ > 0:

lim
n→∞

P
(︂
|θ̂n − θ| ≥ ϵ

)︂
= 0. (C.1)

Additionally, under certain conditions, consistency can be strengthened to almost
sure convergence, that is:

P
(︂

lim
n→∞

θ̂n = θ
)︂

= 1. (C.2)

Theorem C.3.1. The mean is the optimal predictor for minimizing mean squared error
(MSE) in a prediction.

Proof. For a random variable X with mean µ, the squared error is (X − c)2. The
expected value is:

E[(X − c)2] = E[(X −µ+µ− c)2] = E[(X −µ)2] + (µ− c)2 ≥ E[(X −µ)2]. (C.3)

Thus, MSE is minimized when c = µ.

An estimator’s quality also depends on its dispersion around θ. The MSE of Θ̂ is
defined as: mse(Θ̂) = E[(Θ̂− θ)2].

For unbiased estimators, MSE equals the variance D2(Θ̂): mse(Θ̂) = D2(Θ̂) +
[E(Θ̂)− θ]2.Thus, an estimator is unbiased if its MSE equals its variance.

Efficiency of Estimators. For unbiased estimators, the one with the smallest variance is
considered efficient because it reduces the uncertainty of the estimation. More formally,
an estimator Θ̂1 is said to outperform an estimator Θ̂2 if the MSE of Θ̂1 is lower than
that of Θ̂2, i.e.,

MSE(Θ̂1) < MSE(Θ̂2) (C.4)

In a specific case where both Θ̂1 and Θ̂2 are unbiased estimators of the same parameter
θ, their variances can be compared directly. In this context, Θ̂2 is more efficient than Θ̂1
if the variance of Θ̂2 is less than that of Θ̂1, that is,
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Var(Θ̂1) > Var(Θ̂2) (C.5)

for all possible values of θ.

C.4 Bayesian Inference
In data analysis, Bayesian statistics plays a crucial role. Bayesian probability is an
interpretation of probability where, instead of frequency or propensity, probability is
interpreted as rational expectation. In the Bayesian view, a probability is assigned to a
hypothesis, whereas in the frequentist approach to inference, a hypothesis is typically
tested without assigning it a probability. To evaluate the probability of a hypothesis, the
Bayesian must specify a prior probability, which is then updated to a posterior probability
in light of new relevant data.

A fundamental part of Bayesian statistics involves the concepts of joint, marginal, and
conditional probability. Consider a vector X of n random variables X = X1, . . . , Xn.

Definition C.4.1. The function FX = FX1,...,Xn : Rn → [0, 1] defined as:

Fx = P(X1 ≤ x1, . . . , Xn ≤ xn) (C.6)

is called the joint distribution function of the vector X of random variables.

Now, divide the random variables into two groups,XA andXB , whereA andB form
a partition of the index set.

Definition C.4.2. The marginal probability of XA is defined as:

P(XA) =
∫︂

P(X)dXB , (C.7)

where the integral is replaced by a sum if the random variables are discrete. Note that
if A contains more than one variable, the marginal probability is also a joint probability.
Furthermore, if the joint probability distribution equals the product of the marginal
probabilities, the variables are said to be independent.

Definition C.4.3. The conditional probability is defined as:

P(XA|XB) = P(XA, XB)
P(XB) . (C.8)

IfXA andXB are independent, then the marginal probability P(XA) = P(XA|XB).
Using the definition of conditional probabilities, we obtain Bayes’ Theorem:

Theorem C.4.1 (Bayes’ Theorem). For two eventsXA andXB , the following expression
for the conditional probability holds:

P(XA|XB) = P(XA)P(XB |XA)
P(XB) . (C.9)
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The interpretation given to this theorem, which is widely used in Bayesian inference,
is as follows:

posterior probability = prior probability× likelihood
evidence

. (C.10)

Bayesian inference applies this framework to various models, continuously updating
beliefs in light of new data.

C.5 Machine Learning
Machine Learning (ML) is a branch of computer science that focuses on using existing
data to predict future outcomes and trends. It involves identifying patterns and models
from data through data mining techniques. ML applications include tasks like facial
recognition and spam filtering, where machines learn autonomously from data without
explicit programming. The main goal of ML is to create methods that enable learning
for specific tasks. This process can be compared to how a child learns to associate
objects with words, forming a classification function f that maps an input x to an output
y. Outputs in ML can be discrete classes in classification or clustering, or continuous
values in regression.

Types of Machine Learning. ML is typically divided into two main branches: Su-
pervised Learning, where the system is provided with a labeled training set containing
the desired output, forming the basis for a classification function; and Unsupervised
Learning, where the system receives an unlabeled training set and automatically extracts
information from the dataset. In supervised learning, common applications include
classification and regression, while unsupervised learning is often used for clustering,
grouping similar objects into clusters. In this case, the goal is not to find a mapping
function f , but to analyze how the points are organized in the input space.

In this section, after introducing some basic definitions, we will focus on regression
problem, including the Gaussian Processes regression (GPR).

Supervised Learning. Supervised learning is an ML technique in which a model is
trained to approximate a classification map or a continuous function f : X → Y to
predict outcomes based on input data. This training is achieved by providing the model
with labeled examples, enabling it to learn patterns and relationships. Once trained, the
model can predict outcomes for new, unseen data.

To evaluate a model’s performance, data are typically divided into training, testing,
and validation sets. The training set is used to teach the model, the testing set assesses
its accuracy, and the validation set fine-tunes it.

These datasets must be distinct and independent. The ultimate goal of ML is to
apply the model trained on known data to gain insights from new data, correctly labeling
unseen patterns while acquiring predictive and generalization capabilities.
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C.5.1 Regression
Regression is a data mining technique used to identify the functional relationship between
specific datasets of continuous values. It is employed for predictive and descriptive
analysis of a phenomenon, establishing a connection between input values of interest and
the output value. Given a random sample (X1, . . . , Xn) and a random variable Y , the
goal is to find a function f such that

Y = f(X1, . . . , Xn) + ε, (C.11)

where, since a deterministic relationship is rarely plausible, an error term ε is added.
Here, ε is a random variable that represents our uncertainty regarding the relationship

f between X and Y , and is thus called the error variable.
Consider a set of n observations (x1, x2, . . . , xn) corresponding to n output values

yi. The simple regression model is specified by the relationship

yi = f(xi;β) + εi (C.12)

If the function f is linear, it is expressed as:

yi = b0 + b1xi + εi (C.13)

Where b0 is the intercept, and b1 is the slope of the linear model. The error variable εi

is assumed to be a zero-mean Gaussian random variable with variance σ2. This implies
that the random variable Yi is also a Gaussian random with variance σ2.

Let us use the maximum likelihood method, to find point estimators of the parameters.
The likelihood function is:

L(b0, b1, σ
2) =

n∏︂
i=1

1√
2πσ2

exp

[︄
−1

2

(︄
yi − b0 − b1xi

σ

)︄2]︄
(C.14)

By taking the logarithm, we obtain:

logL(b0, b1, σ
2) = −n2 (log 2π + log σ2)− 1

2σ2

n∑︂
i=1

(yi − b0 − b1xi)2 (C.15)

At this point, by partially differentiating with respect to b0, b1, and σ2, and setting
the derivatives to zero, three equations are obtained, whose solutions are the estimators
b̂0, b̂1, and σ̂2:

b̂1 =
∑︁

(yi − ȳ)(xi − x̄)∑︁
(xi − x̄)2 (C.16)

b̂0 = ȳ − b̂1x̄ (C.17)

σ̂2 = 1
n

n∑︂
i=1

(yi − b̂0 − b̂1xi)2 (C.18)
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The estimators found above have the desirable property of being unbiased. Note that
these estimators are consistent with those obtained by minimizing the loss function using
the least squares method.

Let ŷi = b̂0 + b̂1xi represent the estimated value of Y . The difference between the
observed value yi and the estimated value ŷi is called the i-th residual. The least squares
estimates possess an important property known as the decomposition of total variance:

n∑︂
i=1

(yi − ȳ)2 =
n∑︂

i=1
(ŷi − ȳ)2 +

n∑︂
i=1

(yi − ŷi)2

SST = SSR + SSE

(C.19)

The sum of squares total (SST) is equal to the sum of squares regression (SSR) plus
the sum of squares errors (SSE).

Definition C.5.1. The coefficient of determination R2 is defined as:

R2 = SSR

SST
= 1− SSE

SST
(C.20)

The coefficient of determination is a ratio that measures the proportion of data
variability explained by the statistical model. It indicates how well the regression captures
the variance in the dependent variable. R2 ranges from 0 to 1: 0 means the model does
not explain the data at all, while 1 indicates the model explains the data perfectly.

C.6 Gaussian Process Regression
In this section, we introduce Gaussian Processes (GPs), an exceptionally useful tool for
modeling and exploring unknown functions. The fundamental philosophy of this method
is based on empirical Bayesian learning of hyperparameters by maximizing a marginal
likelihood.

There are various interpretations of a GP. One way is to view it as a distribution
over functions with inference performed directly in the function space, while another
equivalent approach is to consider the parameter space. Let us consider the training set,
{(xi, yi) | i = 1, . . . , }, where xi is a vector of dimension D and yi is a scalar. Let us
collect the inputs into a matrixX of dimensionD×n and the target values into a vector
y.

C.6.1 Gaussian Processes as a Prior over Functions
Gaussian Processes provide a general framework for defining priors over functions. A
Gaussian Process is a distribution over functions where any finite collection of function
values follows a joint Gaussian distribution. Formally, a Gaussian Process is defined by
its mean function µ(x) and covariance function k(x, x′):

f(x) ∼ GP(µ(x), k(x, x′)) (C.21)
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Here, f(x) represents the function drawn from the Gaussian Process. The mean function
µ(x) is usually set to zero for simplicity, while the covariance functionk(x, x′) determines
the function’s smoothness and behavior. For example, the squared exponential kernel is
commonly used, defined by:

k(x, x′) = σ2 exp
(︃
−∥x− x

′∥2

2ℓ2

)︃
(C.22)

where σ2 controls the function’s variance and ℓ determines the length scale of the
function’s variations. With this kernel, the covariance between two function values
depends on their distance, allowing the model to learn smooth functions and adapt to
different scales of variation.

The covariance function is a fundamental element for Gaussian Processes, as it
describes our assumptions about the function we aim to learn. From another perspective,
the covariance function also defines a similarity between nearby inputs that should yield
similar target values.

Definition C.6.1. A covariance function f(x,x′) is said to be stationary if it depends
only on the difference x− x′. Thus, it is invariant under translations in space.

For example, the squared exponential kernel function is stationary. Moreover, if the
function depends on the norm of the difference |x − x′|, it is called isotropic. Thus, it
is invariant under all rigid transformations. Given r = |x− x′|, the function k depends
only on the radius of the sphere centered at x and is therefore known as a radial basis
function (RBF).

Definition C.6.2. Given a set of inputs {xi | i = 1, . . . , n}, we can compute the Gram
matrix Kij = k(xi,xj). If k is a covariance function, the matrix K is referred to as the
covariance matrix.

The Gaussian Covariance Function is an example of a radial basis kernel,

k(r) = exp
(︃
− r2

2l2

)︃
, (C.23)

where the parameter l defines the characteristic scale of the function. This function is in-
finitely differentiable, implying that the Gaussian Process with this particular covariance
function has derivatives of the mean square of every order and is therefore very smooth.

C.6.2 Bayesian Model Selection and Hyperparameter Tuning
The goal of Gaussian regression is to be a practical tool in applications, which necessitates
decisions regarding the model’s details. The process of selecting hyperparameters for a
covariance function is called training the Gaussian Process.

Covariance functions, such as the Gaussian one, can be parameterized in terms of
hyperparameters, for example

k(xp,xq) = σ2
f exp

(︃
−1

2(xp − xq)TM(xp − xq)
)︃

+ σ2
nδpq, (C.24)
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whereθ = ({M}, σ2
f , σ

2
n)T is a vector containing the hyperparameters, and {M} denotes

the parameters in the symmetric matrix M . For the Gaussian covariance function,
M = diag(l)−2 represents the distance measure, where the hyperparameters l1, . . . , lD
define the scale characteristic, i.e., how much distance between two inputs makes them
uncorrelated. Such a covariance function uses a method called automatic relevance
determination (ARD). The idea is that if a parameter l becomes very large, the covariance
becomes almost independent of that input, effectively removing that point from inference.
The ARD method is thus used to remove irrelevant inputs, as we will present later in
feature selection section.

Bayesian principles provide a consistent framework for inference, and particularly
when the noise in the data is Gaussian, the integrals over parameters are analytically
tractable, making the model very flexible. Since Gaussian Processes are a non-parametric
model, it may not be obvious what the model parameters are. Generally, we might
consider the values f at the training set inputs as the parameters, meaning more inputs
imply more parameters. Applying Bayesian inference, one can obtain the following
marginal likelihood:

logP(y | X,θ) = −1
2y

TK−1
y y − 1

2 log |Ky| −
n

2 log(2π), (C.25)

where Ky = Kf + σ2
nI is the covariance matrix for the noisy target values y, and Kf

is the covariance matrix for the noise-free values f . Note that the marginal likelihood
is also conditioned on the hyperparameters θ. To find the hyperparameters, we max-
imize the marginal likelihood by calculating the partial derivatives with respect to the
hyperparameters, yielding

∂

∂θj
logP(y | X,θ) = 1

2y
TK−1 ∂K

∂θj
K−1y − 1

2 tr
(︃
K−1 ∂K

∂θj

)︃
= 1

2 tr
(︃(︁

ααT −K−1)︁ ∂K
∂θj

)︃
, where α = K−1y

(C.26)

The computational complexity of calculating the marginal likelihood is dominated
by the need to compute the inverse of K. Traditional methods for inverting a symmetric
positive definite matrix require O(n3) time. Once the inverse matrix is computed, the
derivative calculations take O(n2) time for each hyperparameter. Therefore, gradient-
based optimization is advantageous.
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